Case Study 3: fMRI Prediction

“Scalable” LASSO Solvers:
Parallel SCD (Shotgun)
Parallel SGD
Averaging Solutions
ADMM

Scaling Up LASSO Solvers

• A simple SCD for LASSO (Shooting)
 – Your HW, a more efficient implementation! 😊
 – Analysis of SCD
• Parallel SCD (Shotgun)
• Other parallel learning approaches for linear models
 – Parallel stochastic gradient descent (SGD)
 – Parallel independent solutions then averaging
• ADMM

©Emily Fox 2015
Stochastic Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence
 - Pick a coordinate j at random
 - Set:

 $\beta_j = \begin{cases}
 \frac{(c_j + \lambda)}{a_j} & c_j < -\lambda \\
 0 & c_j \in [-\lambda, \lambda] \\
 \frac{(c_j - \lambda)}{a_j} & c_j > \lambda
 \end{cases}$

- Where:

 $a_j = 2 \sum_{i=1}^{N} (x_i^j)^2$

 $c_j = 2 \sum_{i=1}^{N} x_i^j (y_i - \beta_{-j}^{\prime} x_i^{\prime})$

 Cost per iteration $O(N)$

 Can be done more efficiently. Proof: Your HW!

Shotgun: Parallel SCD [Bradley et al ’11]

Lasso: $\min_\beta F(\beta)$ where $F(\beta) = \|X\beta - y\|_2^2 + \lambda \|\beta\|_1$

Shotgun (Parallel SCD)

While not converged,
 - On each of P processors,
 - Choose random coordinate j,
 - Update β_j (same as for Shooting)
Is SCD inherently sequential?

Lasso: \[\min_{\beta} F(\beta) \] where \[F(\beta) = \|X\beta - y\|_2^2 + \lambda \|\beta\|_1 \]

Coordinate update:
\[\beta_j \leftarrow \beta_j + \delta \beta_j \]
(closed-form minimization)

Collective update:
\[\Delta \beta = \begin{pmatrix} \delta \beta_i \\ 0 \\ 0 \\ \delta \beta_j \\ 0 \end{pmatrix} \]

there are interferences in these updates if features are correlated. Can we quantify this?

Convergence Analysis

Lasso: \[\min_{\beta} F(\beta) \] where \[F(\beta) = \|X\beta - y\|_2^2 + \lambda \|\beta\|_1 \]

Theorem: Shotgun Convergence

Assume \[P < p/\rho + 1 \]
where \(\rho = \text{spectral radius of } X^TX \)

\[E[F(\beta^{(T)})] - F(\beta^*) \leq \frac{P}{P + TP} \left(\frac{1}{2} \|\beta^*\|_2^2 + F(\beta^{(0)}) \right) \]

Nice case: Uncorrelated features
\[\rho = 1 \Rightarrow P_{\text{max}} = \frac{P}{p} \]

Bad case: Correlated features
\[\rho = \frac{p}{P} \Rightarrow P_{\text{max}} = \frac{1}{(at \ worst)} \]

linear speed up, up to \(P \) processors
Stepping Back...

- Stochastic coordinate ascent
 - Optimization: pick a coord. \(j \), find min \(\beta_j \)
 - Parallel SCD: pick \(P \) coordinates
 - Issue: can have interferences on these \(P \) coord. based on \(P \) pt proc.
 - Solution: bound possible interference based on \(P \)

- Natural counterpart:
 - Optimization: SGD
 - Parallel: pick a datapoint \(i \) \(\beta \leftarrow \beta - \nabla \mathcal{L}(x_i; \beta) \)
 - Issue: can interfere on all coord.
 - Solution: bound interfere by exploiting sparsity in \(x \)

Parallel SGD with No Locks

[\text{e.g., Hogwild!, Niu et al. ‘11}]

- Each processor in parallel:
 - Pick data point \(i \) at random
 - For \(j = 1...P \):
 \[\beta_j' \leftarrow \beta_j - \nabla \mathcal{L}(x_i; \beta_j) \]

- Assume atomicity of: \(\beta_j \leftarrow \beta_j + \alpha \)
 - other interferences
Addressing Interference in Parallel SGD

- **Key issues:**
 - Old gradients
 - Processors overwrite each other’s work

- **Nonetheless:**
 - Can achieve convergence and some parallel speedups
 - Proof uses weak interactions, but through sparsity of data points

Problem with Parallel SCD and SGD

- Both Parallel SCD & SGD assume access to current estimate of weight vector

- Works well on shared memory machines

- Very difficult to implement efficiently in distributed memory

- Open problem: Good parallel SGD and SCD for distributed setting…
 - Let’s look at a trivial approach
Simplest Distributed Optimization Algorithm Ever Made

• Given N data points & P machines
• Stochastic optimization problem:
 \[\min_{\beta} F(\beta) = \frac{1}{N} \sum_{i=1}^{N} F(x_i; \beta) \]
• Distribute data:
 \[P_1 \rightarrow \ldots \rightarrow P_P \]
• Solve problems independently
 \[\text{machine } k: \text{ind. estimate } \beta^{(k)} = \min_{\beta} \frac{1}{n} \sum_{x_i \in D_k} F(x_i; \beta) \]
• Merge solutions
 \[\bar{\beta} = \frac{1}{P} \sum_{k} \beta^{(k)} \]
• Why should this work at all????

For Convex Functions...

• Convexity:
 \[F(\beta_1) + F(\beta_2) \geq F(\frac{\beta_1 + \beta_2}{2}) \]
• Thus:
 \[\max (F(\beta_1), F(\beta_2)) \geq F(\bar{\beta}) \]
Hopefully...

- Convexity only guarantees:
 \[F(\bar{\theta}) \leq \max_k F(\theta_k) \]

- But, estimates from independent data!

```
  can we leverage this to improve the bound?
```

Figure from John Duchi

Analysis of Distribute-then-Average

- Under some conditions, including strong convexity, lots of smoothness, etc.
- If all data were in one machine, converge at rate:

\[
E[\|\hat{\beta}_N - \beta^*\|^2] = O\left(\frac{1}{N}\right)
\]

- With P machines, converge at a rate:

\[
E[\|\bar{\beta} - \beta^*\|^2] = O\left(\frac{1}{N} + \frac{1}{N^2}\right)
\]

- "bias" from parallelism
- e.g. 1T data points, 1000 machines \(n \approx 10^5 \) = \(N^2 \)
- negligible compared to \(\frac{1}{N} \)
-

©Emily Fox 2015
Tradeoffs, tradeoffs, tradeoffs,...

- Distribute-then-Average:
 - “Minimum possible” communication
 - Bias term can be a killer with finite data
 - Issue definitely observed in practice
 - Significant issues for L1 problems:

- Parallel SCD or SGD
 - Can have much better convergence in practice for multicore setting
 - Preserves sparsity (especially SCD)
 - But, hard to implement in distributed setting

Alternating Directions Method of Multipliers (ADMM)

- A tool for solving convex problems with separable objectives:

\[
\min_x \frac{1}{2} f(x) + g(x)
\]

- LASSO example:

\[
\min_\beta \frac{1}{2} \| y - X\beta \|_2^2 + \lambda \| \beta \|_1
\]

- Know how to minimize \(f(\beta) \) or \(g(\beta) \) separately

©Emily Fox 2015
ADMM Insight

• Try this instead:
\[
\min_{x, z} \left\{ f(x) + g(z) \right\} \quad \text{s.t.} \quad x = z
\]
still convex!

• Solve using method of multipliers
• Define the augmented Lagrangian:
\[
L_\rho(x, z, y) = f(x) + g(z) + y^T(x - z) + \frac{\rho}{2} \|x - z\|^2
\]

– Issue: L2 penalty destroys separability of Lagrangian
– Solution: Replace minimization over (x, z) by alternating minimization

ADMM Algorithm

• Augmented Lagrangian:
\[
L_\rho(x, z, y) = f(x) + g(z) + y^T(x - z) + \frac{\rho}{2} \|x - z\|^2
\]

• Alternate between:
1. \(x \leftarrow \arg \min_x L_\rho(x, z, y) \)
2. \(z \leftarrow \arg \min_z L_\rho(x, z, y) \)
3. \(y \leftarrow y + \rho (x - z) \)
ADMM for LASSO

\[L_\rho(x, z, y) = f(x) + g(z) + y^T(x - z) + \frac{\rho}{2} ||x - z||^2 \]

- **Objective:**
 \[\min_{\beta, z} \left\{ \frac{1}{2} ||y - X\beta||^2 + \lambda ||z||_1 \right\} \quad \text{s.t.} \quad \beta = z \]

- **Augmented Lagrangian:**
 \[L_\rho(\beta, z, a) = \frac{1}{2} ||y - X\beta||^2 + \lambda ||z||_1 + \alpha^T(\beta - z) + \frac{\rho}{2} ||\beta - z||^2 \]

- **Alternate between:**
 1. \(\beta \leftarrow \arg \min_{\beta} L_\rho(\beta, z, a) = (X^TX + \rho I)^{-1}(X^Ty + \rho z - a) \)
 2. \(z \leftarrow \arg \min_{z} L_\rho(\beta, z, a) = S(\beta + \frac{a}{\rho}, \frac{1}{\rho}) \)
 3. \(a \leftarrow a + \rho (\beta - z) \)

ADMM Wrap-Up

- **When does ADMM converge?**
 - Under very mild conditions
 - Basically, \(f \) and \(g \) must be convex

- ADMM is useful in cases where
 - \(f(x) + g(x) \) is challenging to solve due to coupling
 - We can minimize
 - \(f(x) + (x-a)^2 \)
 - \(g(x) + |x-a|^2 \)

- **Reference**
What you need to know

- A simple SCD for LASSO (Shooting)
 - Your HW, a more efficient implementation! 😊
 - Analysis of SCD

- Parallel SCD (Shotgun)

- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD)
 - Parallel independent solutions then averaging

- ADMM
 - General idea
 - Application to LASSO

©Emily Fox 2015