Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of Features with Sketching

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
April 9th, 2015

Problem 1: Complexity of LR Updates

- Logistic regression update:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \]

- Complexity of updates:
 - Constant in number of data points
 - In number of features?
 - Problem both in terms of computational complexity and sample complexity
 - What can we with very high dimensional feature spaces?
 - Kernels not always appropriate, or scalable
 - What else?

©Emily Fox 2015
Problem 2: Unknown Number of Features

- For example, bag-of-words features for text data:
 - “Mary had a little lamb, little lamb…”

- What’s the dimensionality of \(x \)?
- What if we see new word that was not in our vocabulary?
 - Obamacare
 - Theoretically, just keep going in your learning, and initialize \(w_{\text{Obama}} = 0 \)
 - In practice, need to re-allocate memory, fix indices,... A big problem for Big Data

Count-Min Sketch: general case

- Keep \(p \) by \(m \) Count matrix

- \(p \) hash functions:
 - Just like in Bloom Filter, decrease errors with multiple hashes
 - Every time see string \(i \):
 \[
 \forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1
 \]
Querying the Count-Min Sketch

\[\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1 \]

• Query Q(i)?
 – What is in Count[j,k]?
 \[\text{Count}[j, k] = \sum_{i: h_j(i) = k} a_i \]
 – Thus:
 \[Q(i) \]
 each \(\text{Count}[j, h_j(i)] \geq a_i \]
 – Return:
 \[\hat{a}_i \triangleq \min_j \left\{ \text{Count}[j, h_j(i)] \geq a_i \right\} \]
 tightest upper bound

But updates may be positive or negative

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ \begin{array}{l}
-\lambda w_i^{(t)} + x_i^{(t)} y^{(t)} - P(Y = 1|\mathbf{x}^{(t)}, \mathbf{w}^{(t)})
\end{array} \right\} \]

• Count-Min sketch for positive & negative case
 – \(a_i \) no longer necessarily positive
• Update the same: Observe change \(\Delta_i \) to element \(i \):
 \[\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + \Delta_i \]
 – Each \(\text{Count}[j,h_j(i)] \) no longer an upper bound on \(a_i \)
• How do we make a prediction?

• Bound: \[|\hat{a}_i - a_i| \leq 3\epsilon ||a||_1 \]
 – With probability at least \(1-5^{1/4} \), where \(||a|| = \sum_i |a_i| \)
Finally, Sketching for LR

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \]

- Never need to know size of vocabulary!
- At every iteration, update Count-Min matrix:

- Making a prediction:

- Scales to huge problems, great practical implications...

Hash Kernels

- Count-Min sketch not designed for negative updates
- Biased estimates of dot products

- **Hash Kernels**: Very simple, but powerful idea to remove bias
- Pick 2 hash functions:
 - \(h \): Just like in Count-Min hashing
 - \(\xi \): Sign hash function
 - Removes the bias found in Count-Min hashing (see homework)

- Define a “kernel”, a projection \(\phi \) for \(x \):
Hash Kernels Preserve Dot Products

\[\phi_i(x) = \sum_{j : h(j) = i} \xi(j)x_j \]

- Hash kernels provide unbiased estimate of dot-products!

- Variance decreases as \(O(1/m) \)

- Choosing \(m \)? For \(\epsilon > 0 \), if
 \[
 m = \mathcal{O}\left(\frac{\log \frac{N}{\delta}}{\epsilon^2} \right)
 \]
 - Under certain conditions...
 - Then, with probability at least \(1-\delta \):
 \[
 (1 - \epsilon)||x - x'||_2^2 \leq ||\phi(x) - \phi(x')||_2^2 \leq (1 + \epsilon)||x - x'||_2^2
 \]

Learning With Hash Kernels

- Given hash kernel of dimension \(m \), specified by \(h \) and \(\xi \)
 - Learn \(m \) dimensional weight vector
- Observe data point \(x \)
 - Dimension does not need to be specified a priori!
- Compute \(\phi(x) \):
 - Initialize \(\phi(x) \)
 - For non-zero entries \(j \) of \(x \):
- Use normal update as if observation were \(\phi(x) \), e.g., for LR using SGD:
 \[
 w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(x^{(t)})[y^{(t)} - P(Y = 1|\phi(x^{(t)}), w^{(t)})] \right\}
 \]
Interesting Application of Hash Kernels: Multi-Task Learning

• Personalized click estimation for many users:
 – One global click prediction vector w:

 • But...
 – A click prediction vector w_u per user u:

 • But...

• Multi-task learning: Simultaneously solve multiple learning related problems:
 – Use information from one learning problem to inform the others

• In our simple example, learn both a global w and one w_u per user:
 – Prediction for user u:

 • If we know little about user u:
 • After a lot of data from user u:

Problems with Simple Multi-Task Learning

• Dealing with new user is annoying, just like dealing with new words in vocabulary

• Dimensionality of joint parameter space is HUGE, e.g.
 personalized email spam classification from Weinberger et al.:
 – 3.2M emails
 – 40M unique tokens in vocabulary
 – 430K users
 – 16T parameters needed for personalized classification!
Hash Kernels for Multi-Task Learning

• Simple, pretty solution with hash kernels:
 – Very multi-task learning as (sparse) learning problem with (huge) joint data point z
 for point x and user u:

• Estimating click probability as desired:

• Address huge dimensionality, new words, and new users using hash kernels:

Simple Trick for Forming Projection $\phi(x,u)$

• Observe data point x for user u
 – Dimension does not need to be specified a priori and user can be new!

• Compute $\phi(x,u)$:
 – Initialize $\phi(x,u)$
 – For non-zero entries j of x:
 • E.g., j='Obamacare'
 • Need two contributions to ϕ:
 – Global contribution
 – Personalized Contribution
 • Simply:

• Learn as usual using $\phi(x,u)$ instead of $\phi(x)$ in update function
Results from Weinberger et al. on Spam Classification: Effect of m

Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.

Results from Weinberger et al. on Spam Classification: Multi-Task Effect

Figure 3. Results for users clustered by training emails. For example, the bucket [8, 15] consists of all users with eight to fifteen training emails. Although users in buckets with large amounts of training data do benefit more from the personalized classifier (up to 65% reduction in spam), even users that did not contribute to the training corpus at all obtain almost 20% spam-reduction.
What you need to know

- Hash functions
- Bloom filter
 - Test membership with some false positives, but very small number of bits per element
- Count-Min sketch
 - Positive counts: upper bound with nice rates of convergence
 - General case
- Application to logistic regression
- Hash kernels:
 - Sparse representation for feature vectors
 - Very simple, use two hash function (can use one hash function...take least significant bit to define ξ)
 - Quickly generate projection $\varphi(x)$
 - Learn in projected space
- Multi-task learning:
 - Solve many related learning problems simultaneously
 - Very easy to implement with hash kernels
 - Significantly improve accuracy in some problems (if there is enough data from individual users)

Case Study 2: Document Retrieval

Task Description:
Finding Similar Documents

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
April 9th, 2015

©Emily Fox 2015
Document Retrieval

- **Goal:** Retrieve documents of interest
- **Challenges:**
 - Tons of articles out there
 - How should we measure similarity?

Task 1: Find Similar Documents

- **To begin...**
 - **Input:** Query article
 - **Output:** Set of k similar articles
Document Representation

- Bag of words model

1-Nearest Neighbor

- Articles

- Query:

- 1-NN
 - Goal:

 - Formulation:
k-Nearest Neighbor

- **Articles** \(X = \{x^1, \ldots, x^N\}, \quad x^i \in \mathbb{R}^d \)
- **Query:** \(x \in \mathbb{R}^d \)
- **k-NN**
 - **Goal:**
 - **Formulation:**

Distance Metrics – Euclidean

\[
d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2}
\]

Or, more generally,

\[
d(u, v) = \sqrt{\sum_{i=1}^{d} \sigma_i^2 (u_i - v_i)^2}
\]

Equivalently,

\[
d(u, v) = \sqrt{(u - v)^T \Sigma (u - v)}
\]

where \(\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_d^2 \end{bmatrix} \)

Other Metrics...
- Mahalanobis, Rank-based, Correlation-based, cosine similarity...
Notable Distance Metrics
(and their level sets)

- Scaled Euclidean (L_2)
- Mahalanobis
 (Σ is general symmetric positive definite matrix, on previous slide = diagonal)

- L_1 norm (absolute)
- L_∞ (max) norm

Euclidean Distance + Document Retrieval

- Recall distance metric
 \[d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2} \]

- What if each document were α times longer?
 - Scale word count vectors
 - What happens to measure of similarity?

- Good to normalize vectors
Issues with Document Representation

- Words counts are **bad** for standard similarity metrics

- Term Frequency – Inverse Document Frequency (tf-idf)
 - Increase importance of rare words

TF-IDF

- Term frequency:
 \[tf(t, d) = \]

 - Could also use \(\{0, 1\}, 1 + \log f(t, d) \ldots \)

- Inverse document frequency:
 \[idf(t, D) = \]

- \(\text{tf-idf} \):
 \[\text{tfidf}(t, d, D) = \]

 - High for document \(d \) with high frequency of term \(t \) (high “term frequency”) and few documents containing term \(t \) in the corpus (high “inverse doc frequency”)
Issues with Search Techniques

- Naïve approach: **Brute force search**
 - Given a query point \(x \)
 - Scan through each point \(x_i \)
 - \(O(N) \) distance computations per 1-NN query!
 - \(O(N \log k) \) per \(k \)-NN query!

- What if \(N \) is huge???
 (and many queries)

KD-Trees

- Smarter approach: **kd-trees**
 - Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
 - Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.
 - **kd-trees** work “well” in “low-medium” dimensions
 - We’ll get back to this...
KD-Tree Construction

- Start with a list of d-dimensional points.

<table>
<thead>
<tr>
<th>Pt</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>4.31</td>
</tr>
<tr>
<td>3</td>
<td>0.13</td>
<td>2.85</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

KD-Tree Construction

- Split the points into 2 groups by:
 - Choosing dimension d_j and value V (methods to be discussed...)
 - Separating the points into $x^i_{d_j} > V$ and $x^i_{d_j} \leq V$.

<table>
<thead>
<tr>
<th>Pt</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.13</td>
<td>2.85</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>4.31</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Consider each group separately and possibly split again (along same/different dimension).

☐ Stopping criterion to be discussed...
- Continue splitting points in each set
 - creates a binary tree structure
- Each leaf node contains a list of points

- Keep one additional piece of information at each node:
 - The (tight) bounds of the points at or below this node.
KD-Tree Construction

- Use heuristics to make splitting decisions:
- Which dimension do we split along?
- Which value do we split at?
- When do we stop?

Many heuristics...

- median heuristic
- center-of-range heuristic
Traverse the tree looking for the nearest neighbor of the query point.

Examine nearby points first:
- Explore branch of tree closest to the query point first.
- Examine nearby points first:
 - Explore branch of tree closest to the query point first.

- When we reach a leaf node:
 - Compute the distance to each point in the node.
When we reach a leaf node:
- Compute the distance to each point in the node.

Then backtrack and try the other branch at each node visited.
Each time a new closest node is found, update the distance bound.

Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor.
Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor
Complexity

- For (nearly) balanced, binary trees...
- Construction
 - Size:
 - Depth:
 - Median + send points left right:
 - Construction time:
- 1-NN query
 - Traverse down tree to starting point:
 - Maximum backtrack and traverse:
 - Complexity range:

- Under some assumptions on distribution of points, we get \(O(\log N) \) but exponential in \(d \) (see citations in reading)

©Emily Fox 2015
Complexity for N Queries

- Ask for nearest neighbor to each document
- Brute force 1-NN:
- kd-trees:

Inspections vs. N and d
K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is:

Approximate K-NN with KD Trees

- **Before:** Prune when distance to bounding box $> r$
- **Now:** Prune when distance to bounding box $> r$
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r', then there is no neighbor closer than r' / α.
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.
Wrapping Up – Important Points

kd-trees
- Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation are crucial to answer returned

For both...
- High dimensional spaces are hard!
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... \(N \gg 2^d \)... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise \(\Rightarrow \) Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task

What you need to know

- Document retrieval task
 - Document representation (bag of words)
 - tf-idf

- Nearest neighbor search
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large \(N \)

- kd-trees for nearest neighbor search
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large \(d \)
Acknowledgment

- This lecture contains some material from Andrew Moore’s excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials
- In particular, see:
 - http://grist.caltech.edu/sc4devo/.../files/sc4devo_scalable_datamining.ppt