Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of Features with Sketching

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
April 7th, 2015

Motivating AdaGrad (Duchi, Hazan, Singer 2011)

• Assuming \(\mathbf{w} \in \mathbb{R}^d \), standard stochastic (sub)gradient descent updates are of the form:

\[
\mathbf{w}_i^{(t+1)} \leftarrow \mathbf{w}_i^{(t)} - \eta_t g_{t,i}
\]

• Should all features share the same learning rate?

 \begin{itemize}
 \item \textcolor{red}{\underline{\textbf{No}}} \text{ maybe instead: } \eta_{t,i} \text{ specific to feature } i
 \end{itemize}

• Often have high-dimensional feature spaces

 \begin{itemize}
 \item Many features are irrelevant
 \item Rare features are often very informative
 \end{itemize}

• Adagrad provides a feature-specific adaptive learning rate by incorporating knowledge of the geometry of past observations
AdaGrad Algorithm

- At time t, estimate optimal (sub)gradient modification A by
 \[A_t = \left(\sum_{\tau=1}^{t} g_{\tau} g_{\tau}^T \right)^{\frac{1}{2}} \]
 in d dims, matrix $\sqrt{\text{diag}(A_t)}$ is $O(d^3)$

- For d large, A_t is computationally intensive to compute. Instead,
 \[\text{diag}(A_t) = A_t = \begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & \ddots & \vdots & \vdots \\ 0 & \cdots & A_{dd} \end{pmatrix}, \quad A_{t,ii} = \sqrt{g_{ii}^2} \]

- Then, algorithm is a simple modification of normal updates:
 \[
 w(t+1) = \arg\min_{w \in \mathcal{W}} ||w - (w(t) - \eta \text{diag}(A_t)^{-1} g_t)||^2_{\text{diag}(A_t)}
 \]

AdaGrad Theoretical Guarantees

- AdaGrad regret bound:
 \[
 \frac{1}{T} \sum_{t=1}^{T} \ell_t(w(t)) - \ell_t(w^*) \leq 2R_{\infty} \sum_{i=1}^{d} ||g_1:T,i||_2
 \]
 with $R_{\infty} := \max_{i} ||w(t) - w^*||_{\infty}$

- In stochastic setting:
 \[
 \frac{1}{T} \sum_{t=1}^{T} \ell_t(w(t)) - \ell(w^*) \leq 2R_{\infty} \sum_{i=1}^{d} \mathbb{E}[||g_1:T,i||_2]
 \]

- This really is used in practice!
- Many cool examples. Let’s just examine one…
AdaGrad Theoretical Example

- Expect to out-perform when gradient vectors are sparse
- SVM hinge loss example:
 \[
 \ell_t(w) = [1 - y^t \cdot \langle x^t, w \rangle] + \text{Hinge loss:}
 \]
 \[\text{Example}
 \]
 \[\text{Expect to out-perform when gradient vectors are}
 \]
 \[\text{sparse}
 \]
 \[\text{SVM hinge loss example:}
 \]
 \[\text{If } x_j^t \neq 0 \text{ with probability } \alpha \]
 \[\text{Previously best known method:}
 \]
 \[E \left[\ell \left(\frac{1}{T} \sum_{t=1}^{T} w^{(t)} \right) \right] - \ell(w^*) = O \left(\frac{||w^*||_\infty}{\sqrt{T}} \cdot \max \{ \log d, d^{1-\alpha/2} \} \right)
 \]

Neural Network Learning

- Very non-convex problem, but use SGD methods anyway
 \[\ell(w, x) = \log(1 + \exp(\langle [p(\langle w_1, x_1 \rangle) \cdots p(\langle w_k, x_k \rangle)], x_0 \rangle))
 \]
 \[p(\alpha) = \frac{1}{1 + \exp(\alpha)}
 \]

Distributed, \(d = 1.7 \cdot 10^9\) parameters. SGD and AdaGrad use 80 machines (1000 cores), L-BFGS uses 800 (10000 cores)

Images from Duchi et al. ISMP 2012 slides
What you should know about Logistic Regression (LR) and Click Prediction

• Click prediction problem:
 – Estimate probability of clicking
 – Can be modeled as logistic regression
• Logistic regression model: Linear model
• Gradient ascent to optimize conditional likelihood
• Overfitting + regularization
• Regularized optimization
 – Convergence rates and stopping criterion
• Stochastic gradient ascent for large/streaming data
 – Convergence rates of SGD
• AdaGrad motivation, derivation, and algorithm

Problem 1: Complexity of LR Updates

• Logistic regression update:
\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \]

• Complexity of updates:
 – Constant in number of data points
 – In number of features?
 - Problem both in terms of computational complexity and sample complexity
 - What if we have 1B features?
• What can we with very high dimensional feature spaces?
 – Kernels not always appropriate, or scalable
 – What else?
Problem 2: Unknown Number of Features

- For example, bag-of-words features for text data:
 - “Mary had a little lamb, little lamb…”

- What’s the dimensionality of x?
- What if we see new word that was not in our vocabulary?
 - Obamacare
 - Theoretically, just keep going in your learning, and initialize $w_{\text{Obamacare}} = 0$
 - In practice, need to re-allocate memory, fix indices,… A big problem for Big Data

What Next?

- Hashing & Sketching!
 - Addresses both dimensionality issues and new features in one approach!

- Let’s start with a much simpler problem: Is a string in our vocabulary?
 - Membership query

- How do we keep track?
 - Explicit list of strings
 - Very slow
 - Fancy Trees and Tries
 - Hard to implement and maintain
 - Hash tables?
Hash Functions and Hash Tables

- Hash functions map keys to integers (bins):
 - Keys can be integers, strings, objects, ...

- Simple example: \(\text{mod} \)
 - \(h(i) = (a \cdot i + b) \% m \)
 - \(a = 7, b = 11, m = 32 \)
 - \(h(i) = (7 \cdot i + 11) \% 32 \)
 - Random choice of \((a, b)\) (usually primes)
 - If inputs are uniform, bins are uniformly used
 - From two results can recover \((a, b)\), so not pairwise independent -> Typically use fancier hash functions

- Hash table:
 - Store list of objects in each bin
 - Exact, but storage still linear in size of object ids, which can be very long
 - E.g., hashing very long strings, entire documents

Hash Bit-Vector Table-Based Membership Query

- Approximate queries with one-sided error: Accept false positives only
 - If we say no, element is not in set
 - If we say yes, element is very to be likely in set

- Given hash function, keep binary bit vector \(v \) of length \(m \):
 - \(\text{Query } Q(i): \text{ Element } i \text{ in set?} \)
 - \(V(h(i)) = 0 \Rightarrow Q(i) = \text{ no!} \)
 - \(V(h(i)) = 1 \Rightarrow Q(i) = \text{ probably yes (or if } m \text{ small we could have no idea.)} \)

- Collisions:
 - \(h(\text{Obama care}) = 7 \Rightarrow V(h(\text{Obama care})) = V(7) = 1 \)
 - \text{but 'Obama care' not in set}

- Guarantee: One-sided errors, but may make many mistakes
 - How can we improve probability of correct answer?
Bloom Filter: Multiple Hash Tables

- Single hash table → Many false positives
- Multiple hash tables with independent hash functions
 - Apply $h_1(i), \ldots, h_p(i)$, set all bits to 1

 - Query $Q(i)$?

 $\forall j \ h_j(i) = 1$
 $Q(i) = \text{very probably yes}$
 $\text{else } Q(i) = \text{no}$

- Significantly decrease probability of false positives

Analysis of Bloom Filter

- Want to keep track of n elements with false positive probability of $\delta > 0$... how large m & p?

- Simple analysis yields:

 $m = \frac{n \log_2 \frac{1}{\delta}}{\ln 2} \approx 1.5n \log_2 \frac{1}{\delta}$

 $p = \log_2 \frac{1}{\delta}$

 Prob. of mistakes exp. decreasing w/ # of hash tables

 Single hash table: $\frac{1}{m}$ by making hash table longer
Sketching Counts

- Bloom Filter is super cool, but not what we need...
 - We don’t just care about whether a feature existed before, but to keep track of counts of occurrences of features! (assuming x_i integer)
- Recall the LR update:
 $$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\}$$
- Must keep track of (weighted) counts of each feature:
 - E.g., with sparse data, for each non-zero dimension i in $x^{(t)}$:
 - For all entries of hash $h^{(t)}$ by $(1-\eta t)$
 - For all $x_i^{(t)} \neq 0$
 - $w_i^{(t+1)} = x_i^{(t)} \cdot \text{const} \leftarrow \lambda (y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})$)
- Can we generalize the Bloom Filter?

Count-Min Sketch: single vector

- Simpler problem: Count how many times you see each string
- Single hash function:
 - Keep Count vector of length m
 - every time see string i:
 $$\text{Count}[h(i)] \leftarrow \text{Count}[h(i)] + 1$$
 - Again, collisions could be a problem:
 - a_i is the count of element i
 - $\hat{a}_i = \text{true counts}$
 - $Q(i) \rightarrow \text{return } \hat{a}_i = \text{true count of } i$
Count-Min Sketch: general case

- Keep p by m Count matrix

- p hash functions:
 - Just like in Bloom Filter, decrease errors with multiple hashes
 - Every time see string i:
 \[
 \forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1
 \]

Querying the Count-Min Sketch

- Query $Q(i)$?
 - What is in $\text{Count}[j,k]$?
 \[
 \text{Count}[j,k] = \sum_{i : h_j(i) = k} a_i
 \]
 - Thus:
 \[
 Q(i) \text{ of each } \text{Count}[j,h_j(i)] \geq a_i
 \]
 - Return:
 \[
 \hat{a}_i = \min_j \text{Count}[j, h_j(i)] \geq a_i
 \]

©Emily Fox 2015
Analysis of Count-Min Sketch

\[\hat{a}_i = \min_j \text{Count}[j, h(i)] \geq a_i \]

- Set:
 \[m = \left\lceil \frac{e}{\epsilon} \right\rceil \quad p = \left\lceil \frac{\ln \frac{1}{\delta}}{\epsilon} \right\rceil \]
 - length of each hash
 - # of hashes
 - false pos. rate

- Then, after seeing n elements:
 \[a_i \leq \hat{a}_i \leq a_i + \epsilon n \]
 - high prob. statement

- With probability at least 1-\delta

Proof of Count-Min for Point Query with Positive Counts: Part 1 – Expected Bound

- \(I_{i,k} \) = indicator that \(i \) & \(k \) collide on hash \(j \):
 \[(i \neq k) \land (h_j(i) = h_j(k)) \]
 \[m = \left\lceil \frac{e}{\epsilon} \right\rceil \]

- Bounding expected value:
 \[E[I_{i,j,k}] = P(h_j(i) = h_j(k)) = \frac{1}{m} \leq \frac{\epsilon}{e} \]

- \(X_{i,j} \) = total colliding mass on estimate of count of \(i \) in hash \(j \):
 \[X_{i,j} = \sum_{k \neq i} I_{i,j,k} \alpha_k \]
 \[\text{add their counts if collide} \]

- Bounding colliding mass:
 \[E[X_{i,j}] = \sum_{k \neq i} \alpha_k \frac{E[I_{i,j,k}]}{m} \leq \frac{ne}{e} \]
 \[\text{sum over words \neq 'Mary'} \]

- Thus, estimate from each hash function is close in expectation
Proof of Count-Min for Point Query with Positive Counts: Part 2 – High Probability Bounds

- What we know: \(\text{Count}[j, h_j(i)] = a_i + X_{i,j} \quad E[X_{i,j}] \leq \frac{e}{n} \)

- Markov inequality: For \(z_1, \ldots, z_k \) positive iid random variables

\[
P(\forall z_i : z_i > \alpha E[z_i]) < \alpha^{-k}
\]

- Applying to the Count-Min sketch:

\[
P(\hat{a}_i > a_i + \epsilon n) = P(\forall j, \text{Count}[j, h_j(i)] > a_i + \epsilon n) = P(\forall j, a_i + X_{i,j} > a_i + \epsilon n) \leq P(\forall j, X_{i,j} > \epsilon E[X_{i,j}]) < e^{-p} \leq \delta
\]