Case Study 3: fMRI Prediction

Coping with Large Covariances: Graphical Models, Graphical LASSO

Multivariate Normal Models

- So far, we looked at univariate multiple regression
 \[y^i = \beta_0 + \beta_1 x^i + \ldots + \beta_p x^i_p + \epsilon^i \sim \mathcal{N}(0, \sigma^2) \quad y^i \in \mathbb{R}^p \]
 \[= \beta^T x^i + \epsilon^i \]
 \[\Rightarrow y^i \sim \mathcal{N}(\beta^T x^i, \sigma^2) \]

- If one has a multivariate response \(y^f \in \mathbb{R}^d \)

 So far, independence between dimensions
 \[y^f \sim \mathcal{N}
 \begin{pmatrix}
 \beta^T \\
 \vdots \\
 \beta^{(d)T}
 \end{pmatrix} x^i,
 \begin{pmatrix}
 \sigma^2 & 0 & \ldots & 0 \\
 0 & \sigma^2 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & \sigma^2
 \end{pmatrix}
 \]

\(\beta^{(l)} \) are coeff. for the \(l \)th semantic feature

leads to \(d \) ind. problems
Multivariate Normal Models

- If one has a multivariate response $y_i \in \mathbb{R}^d$
 - Assuming correlation between the output dimensions

 $y_i \sim N(B^T x_i, \Sigma)$

 (non-diagonal)

 recall: $\text{cov}(y_i, y_j) = \Sigma_{ij}$

- Assume linear (or other mean regression) is removed and focus on the correlation structure

 $y_i \sim N(0, \Sigma)$

 Σ sym. pos. def.

- Matrix valued parameter!

- See more on matrix valued params in Case Study 4

Low-Rank Approximations

- In pictures...

 \[
 \Sigma = \Lambda \Lambda' + \Sigma_0
 \]

 $\Sigma_0 = \text{diag}(\sigma_1^2, \ldots, \sigma_d^2)$

 \[
 \begin{array}{c}
 \text{dxd} \\
 \text{dcd}
 \end{array}
 \]

- Number of parameters:

 \[
 dk + d = d(k+1) < \frac{d(d+1)}{2}
 \]

 \(\text{sig. reduction in param. for } k \ll d\)
Latent Factor Models

- Original multivariate regression
 \[y^i = B^T x^i + e^i, \quad e^i \sim N(0, \Sigma) \]
- Latent factor model assumption:
 \[\Sigma = \Lambda \Lambda' + \Sigma_0 \]
- Low-rank approximation arises from a latent factor model

\[y^i = \Lambda \eta^i + \varepsilon^i \]

\[\etahat \sim N_k(0, I) \]
\[\varepsilonhat \sim N_d(0, \Sigma_0) \]

Proof:
\[\text{Cov}(y, \eta, \xi_0) = \mathbb{E}[(y - \mathbb{E}y)(y - \mathbb{E}y)^T] = \mathbb{E}[yy^T] \]
\[= \mathbb{E}[(\Lambda \eta + \varepsilon)(\Lambda \eta + \varepsilon)^T] = \Lambda \mathbb{E}[\eta \eta^T] \Lambda' + 2 \mathbb{E}[\eta \varepsilon^T] + \mathbb{E}[\varepsilon \varepsilon^T] \]
\[= \Lambda I \Lambda'^T + \Sigma_0 + \mathbb{E}[\varepsilon \varepsilon^T] \]

Lower-dim Embeddings

Sharing information in low-dim subspace

\[\mathbb{R}^d \rightarrow \mathbb{R}^k \]

"can you hold it?"
"is it bigger than a bread box"
"is it big?"

©Emily Fox 2015
Sparsity Assumptions

- What if we assume Σ is sparse?

\[
(i \neq j) \Sigma_{ij} = 0 \rightarrow \text{Gaussian } y_i \perp \! \! \! \! \perp y_j \\
\text{cov}(y_i, y_j) = 0
\]

Could assume Σ sparse to reduce # params, but each 0 encodes an independence statement, often too strong of an assumption.

- More often, we can reasonably make statements about conditional independence

 "cat" \perp "dog" $|$ "animal", "furry", "pet"

Information Form

- Motivations for considering “information form” of multivariate normal
 - Easier to read off conditional densities
 - Has log-linear form in terms of “information parameters”
Conditional Densities

- Assume a model with
 \[y \sim N^{-1}(\eta, \Omega) \]
 and divide the dimensions into two sets
- Then,
 \[\begin{bmatrix} y_A^1 \\ y_A^2 \end{bmatrix} \sim N \left(\begin{bmatrix} \eta_A \\ \Omega_{AA} \end{bmatrix}, \begin{bmatrix} \Omega_{AA} & \Omega_A \Omega_{\bar{A}} \\ \Omega_A & \Omega_{\bar{A}} \Omega_{\bar{A}} \end{bmatrix} \right) \]

- Let \(A = \{ s, t \} \)
 \[p(y_A \mid y_{\bar{A}}) = N^{-1}(\eta_A - \Omega_{A\bar{A}}y_{\bar{A}}, \Omega_{AA}) \]
 what if \(\Omega_{st} = 0 \) ?
 \[\begin{bmatrix} \Omega_{ss} & \Omega_{st} \\ \Omega_{ts} & \Omega_{tt} \end{bmatrix} \]
 \[\text{cov}(y_s, y_t \mid y_{\bar{st}}) = \Omega_{AA}^{-1} = \begin{bmatrix} \Omega_{ss}^{-1} & 0 \\ 0 & \Omega_{tt}^{-1} \end{bmatrix} \]

- Therefore,
 \[y_s \perp y_t \mid y_{\bar{st}} \iff \Omega_{st} = 0 \]
Connection with Graphical Models

- Undirected graphical model or Markov random field (MRF)

$p(y | \eta, \Omega) \propto \prod_t \psi_t(y_t) \prod_{(s,t) \in E} \psi_{st}(y_s, y_t)$

\[\psi_t(y_t) \propto e^{\eta_t y_t} \]

\[\psi_{st}(y_s, y_t) \propto e^{-\frac{1}{2} y_s \Omega_{st} y_t} \]

Sparse Precision vs. Covariance

- For a sparse precision matrix, the covariance need not be

$\Rightarrow \text{y is still fully correlated}$

©Emily Fox 2015
ML Estimation for Given Graph

- Assume a known graph $G = (V,E)$
- Rewrite log likelihood:

$$
\log p(y|\theta) = \frac{N}{2}\log|\Omega| - \frac{1}{2} \sum_{i} (y_i - \mu)^T \Omega (y_i - \mu)
$$

$$
= \frac{N}{2} \log|\Omega| - \frac{1}{2} \text{tr} \left(S_{\Omega} \Omega \right)
$$

$$
= \frac{N}{2} \log|\Omega| - \frac{1}{2} \text{tr} \left(S_{\Omega} \Omega \right)
$$

In our case, $\mu = 0$

ML Estimation for Given Graph

$$
L(\Omega) = \log |\Omega| - \text{tr}(S\Omega)
$$

- Take gradient:

$$
\nabla L(\Omega) = \Omega^{-1} - S
$$

s.t. $S_{st} = 0$ if $(s,t) \notin E$ \hspace{1cm} linear constraint

Many approaches to solving:

- Barrier method – add penalty discouraging Ω from leaving the positive definite cone (Dahl et al. 2008)
- Coordinate descent method (cf., Hastie et al. 2009)
- ...

©Emily Fox 2015
ML Estimation for Given Graph

- Can show that the optimal solution satisfies
 \[\hat{\Sigma}_{ML,G} = S_{\text{tr}} \quad \text{if} \quad (s,t) \in E \]
 \[\hat{\Sigma}_{ML,G} = 0 \quad \text{if} \quad s = t \quad \text{or} \quad (s,t) \notin E \]

Example:

Example adjacency matrix:
\[G = \begin{pmatrix}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0
\end{pmatrix} \]

Example precision matrix:
\[S = \begin{pmatrix}
 10 & 1 & 5 & 4 \\
 1 & 10 & 2 & 6 \\
 5 & 2 & 10 & 3 \\
 4 & 6 & 3 & 10
\end{pmatrix} \]

Example precision matrix:
\[S = \begin{pmatrix}
 10 & 1 & 13 & 4 \\
 1 & 10 & 2 & 0.87 \\
 13 & 2 & 10 & 3 \\
 4 & 0.87 & 3 & 10
\end{pmatrix} \]

Estimating Graph Structure

- To learn the structure of the Gaussian graphical model, we want to trade off fit and sparsity
 - Measure of fit: \(\log-likelihood \quad \log |S\|_1 - \text{tr} (S \hat{\Sigma}) + \text{const.} \)
 - Encouraging sparsity: \(\|\hat{\Sigma}\|_1 = \sum_{s,t} |\hat{\Sigma}_{s,t}| \quad \text{want to min} \)
 - Overall objective = “graphical LASSO” or “Glasso”

\[F(S) = -\log |S\|_1 + \text{tr} (S \hat{\Sigma}) + \lambda \|\hat{\Sigma}\|_1 \]

Just as in LASSO, but with a matrix parameter and \(S \geq 0 \)
Solving the Graphical LASSO

- Objective is convex, but non-smooth as in LASSO
- Also, positive definite constraint!

- There are many approaches to optimizing the objective
 - Most common = coordinate descent akin to shooting algorithm (Friedman et al. 2008)
 - See HW 3

- Some issues...
 - Ballpark: several minutes for a 1000-variable problem
 - Algorithms scale as $O(d^3)$

- Other approach = ADMM
 - Also HW 3

Faster Computations

From Daniela Witten’s talk at JSM 2012:

1. The jth variable is unconnected from all others in the graphical lasso solution if and only if $|S_{ij}| \leq \lambda$ for all $i = 1, \ldots, j - 1, j + 1, \ldots, p$.

2. Let A denote the $p \times p$ matrix whose elements take the form $A_{ij} = 1, A_{ij} = 1_{|S_{ij}| > \lambda}$. Then the connected components of A are the same as the connected components of the graphical lasso solution.

We can obtain the exact right answer by solving the graphical lasso on each connected component separately!

Citations: Witten et al. JCGS 2011, Mazumder and Hastie JMLR 2012
Covariance Screening for Glasso

From Daniela Witten’s talk at JSM 2012:

- The solution to the graphical lasso problem with $\lambda = 0.7$ has five connected components (why 5?!)
- Perform graphical lasso on each component separately!
- **Reduction in computational time:** From $O(50^3)$ to $O(24^3)$.