Case Study 2: Document Retrieval

Task Description:
Finding Similar Documents

Task 1: Find Similar Documents

To begin...

- Input: Query article ×
- Output: Set of k similar articles

©Emily Fox 2015
k-Nearest Neighbor

- **Articles** \(X = \{ x^1, \ldots, x^N \} \), \(x^i \in \mathbb{R}^d \)
- **Query:** \(x \in \mathbb{R}^d \)
- **k-NN**
 - **Goal:** Find \(k \) articles in \(X \) closest to \(x \)
 - **Formulation:**
 \[
 X^{\text{NN}} = \{ x^{\text{NN}1}, \ldots, x^{\text{NN}k} \} \subseteq X
 \]
 \[
 \text{s.t. } \forall x^i \in X \setminus X^{\text{NN}}
 \]
 \[
 d(x^i, x) \geq \max_{x^{\text{NN}}} d(x^{\text{NN}}, x)
 \]

Issues with Search Techniques

- **Naïve approach:**
 - **Brute force search**
 - Given a query point \(x \)
 - Scan through each point \(x^i \)
 - \(O(N) \) distance computations per 1-NN query!
 - \(O(N \log k) \) per k-NN query!
 - Keep priority queue of top \(k \) and inserting into queue is \(\log k \)

- What if \(N \) is huge???
 (and many queries)
KD-Trees

- Smarter approach: \textit{kd-trees}
 - Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
 - Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.
 - \textit{kd-trees} work “well” in “low-medium” dimensions
 - We’ll get back to this...

KD-Tree Construction

- Keep one additional piece of information at each node:
 - The (tight) bounds of the points at or below this node.
KD-Tree Construction

- Use heuristics to make splitting decisions:
 - Which dimension do we split along?

- Which value do we split at?

- When do we stop?

Many heuristics...

- median heuristic
- center-of-range heuristic
Traverse the tree looking for the nearest neighbor of the query point.

- Examine nearby points first:
 - Explore branch of tree closest to the query point first.
Examine nearby points first:
- Explore branch of tree closest to the query point first.

When we reach a leaf node:
- Compute the distance to each point in the node.
- When we reach a leaf node:
 - Compute the distance to each point in the node.

- Then backtrack and try the other branch at each node visited.
Each time a new closest node is found, update the distance bound.

Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor.
Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor
Complexity

- For (nearly) balanced, binary trees...
- **Construction**
 - Size:
 - Depth:
 - Median + send points left right:
 - Construction time:
- **1-NN query**
 - Traverse down tree to starting point:
 - Maximum backtrack and traverse:
 - Complexity range:

Under some assumptions on distribution of points, we get O(logN) but exponential in d (see citations in reading)
Complexity for N Queries

- Ask for nearest neighbor to each document
- Brute force 1-NN:
- kd-trees:

Inspections vs. N and d
K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is:

Approximate K-NN with KD Trees

- **Before**: Prune when distance to bounding box >
- **Now**: Prune when distance to bounding box >
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r', then there is no neighbor closer than r'/α.
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.
Wrapping Up – Important Points

kd-trees
- Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation are crucial to answer returned

For both...
- High dimensional spaces are hard!
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N \gg 2^d$... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise → Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task

What you need to know
- Document retrieval task
 - Document representation (bag of words)
 - tf-idf
- Nearest neighbor search
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large N
- kd-trees for nearest neighbor search
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large d
Acknowledgment

- This lecture contains some material from Andrew Moore’s excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials
- In particular, see:
 - http://grist.caltech.edu/sc4devo/.../files/sc4devo_scalable_datamining.ppt

Case Study 2: Document Retrieval

Locality-Sensitive Hashing
Random Projections for NN Search

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
April 14th, 2015
Using Hashing to Find Neighbors

- KD-trees are cool, but...
 - Non-trivial to implement efficiently
 - Problems with high-dimensional data
- Approximate neighbor finding...
 - Don’t find exact neighbor, but that’s OK for many apps, especially with Big Data
- What if we could use hash functions:
 - Hash elements into buckets:
 - Look for neighbors that fall in same bucket as x:
- But, by design...

Locality Sensitive Hashing (LSH)

- A LSH function h satisfies (for example), for some similarity function d, for $r>0$, $\alpha>1$:
 - $d(x,x') \leq r$, then $P(h(x)=h(x'))$ is high
 - $d(x,x') > \alpha r$, then $P(h(x)=h(x'))$ is low
 - (in between, not sure about probability)
Random Projection Illustration

- Pick a random vector v:
 - Independent Gaussian coordinates

- Preserves separability for most vectors
 - Gets better with more random vectors

Multiple Random Projections: Approximating Dot Products

- Pick m random vectors $v(i)$:
 - Independent Gaussian coordinates

- Approximate dot products:
 - Cheaper, e.g., learn in smaller m dimensional space

- Only need logarithmic number of dimensions!
 - N data points, approximate dot-product within $\varepsilon > 0$:

\[
m = O\left(\frac{\log N}{\varepsilon^2}\right)
\]

- But all sparsity is lost
LSH Example: Sparser Random Projection for Dot Products

- Pick random vectors $v^{(i)}$
- Simple 0/1 projection: $\phi_i(x) = \langle v^{(i)}, x \rangle$
- Now, each vector is approximated by a bit-vector
- Dot-product approximation:

LSH for Approximate Neighbor Finding

- Very similar elements fall in exactly same bin:

- And, nearby bins are also nearby:

- Simple neighbor finding with LSH:
 - For bins b of increasing hamming distance to $\phi(x)$:
 - Look for neighbors of x in bin b
 - Stop when run out of time

- Pick m such that $N/2^m$ is “smallish”
Hash Kernels: Even Sparser LSH for Learning

- Two big problems with random projections:
 - Data is sparse, but random projection can be a lot less sparse
 - You have to sample many huge random projection vectors
 - And, we still have the problem with new dimensions, e.g., new words
- **Hash Kernels**: Very simple, but powerful idea: combine sketching for learning with random projections
- Pick 2 hash functions:
 - \(h \): Just like in Count-Min hashing
 - \(\xi \): Sign hash function
 - Removes the bias found in Count-Min hashing (see homework)
- Define a “kernel”, a projection \(\phi \) for \(x \):

Hash Kernels, Random Projections and Sparsity

\[
\phi_i(x) = \sum_{j:h(j)=i} \xi(j)x_j
\]

- Hash Kernel as a random projection:

- What is the random projection vector for coordinate \(i \) of \(\phi \):

- Implicitly define projection by \(h \) and \(\xi \), so no need to compute apriori and automatically deals with new dimensions
- Sparsity of \(\phi \), if \(x \) has \(s \) non-zero coordinates:
What you need to know

- **Locality-Sensitive Hashing (LSH):** nearby points hash to the same or nearby bins
- LSH uses random projections
 - Only $O(\log N/\varepsilon^2)$ vectors needed
 - But vectors and results are **not** sparse
- **Use LSH for nearest neighbors by mapping elements into bins**
 - Bin index is defined by bit vector from LSH
 - Find nearest neighbors by going through bins
- **Hash kernels:**
 - Sparse representation for feature vectors
 - Very simple, use two hash functions
 - Can even use one hash function, and take least significant bit to define ξ
 - Quickly generate projection $\phi(x)$
 - Learn in projected space