Case Study 2: Document Retrieval

Task Description:
Finding Similar Documents

Task 1: Find Similar Documents

- To begin...
 - Input: Query article
 - Output: Set of k similar articles
k-Nearest Neighbor

- **Articles** \(X = \{ x^1, \ldots, x^N \}, \quad x^i \in \mathbb{R}^d \)
- **Query** \(x \in \mathbb{R}^d \)
- **k-NN**
 - Goal: Find \(k \) articles in \(X \) closest to \(x \)
 - Formulation:
 \[
 X_{\text{NN}} = \{ x^{\text{NN}_1}, \ldots, x^{\text{NN}_N} \} \subseteq X \\
 \text{s.t.} \quad \forall x^i \in X \setminus X_{\text{NN}} \\
 d(x^i, x) \geq \max_{x^{\text{NN}_j} \in X_{\text{NN}}} d(x^{\text{NN}_j}, x)
 \]

Issues with Search Techniques

- **Naïve approach:** Brute force search
 - Given a query point \(x \)
 - Scan through each point \(x^i \)
 - \(O(N) \) distance computations per 1-NN query!
 - \(O(N \log k) \) per \(k \)-NN query!
 - Keep priority queue of top \(k \) + inserting into queue is \(\log \)

- What if \(N \) is huge???
 (and many queries)
Smarter approach: \textit{kd-trees}

- Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
- Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.

\textit{kd-trees} work “well” in “low-medium” dimensions
- We’ll get back to this...

Keep one additional piece of information at each node:
- The (tight) bounds of the points at or below this node.
KD-Tree Construction

- Use heuristics to make splitting decisions:
 - Which dimension do we split along? *widest (or alternate)*
 - Which value do we split at? *median of chosen split dim (or center)*
 - When do we stop?
 - Fewer than *m* pt *left*
 - or
 - box hits minimum width

Many heuristics...

- median heuristic
- center-of-range heuristic

©Emily Fox 2015
Nearest Neighbor with KD Trees

- Traverse the tree looking for the nearest neighbor of the query point.

Nearest Neighbor with KD Trees

- Examine nearby points first:
 - Explore branch of tree closest to the query point first.
Examine nearby points first:
- Explore branch of tree closest to the query point first.

When we reach a leaf node:
- Compute the distance to each point in the node.
When we reach a leaf node:
- Compute the distance to each point in the node.

Then backtrack and try the other branch at each node visited.
Each time a new closest node is found, update the distance bound

Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor
Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - Prune parts of the tree that could NOT include the nearest neighbor
Complexity

For (nearly) balanced, binary trees...

Construction
- Size: $2^{N-1} \rightarrow O(N)$
- Depth: $O(\log N)$
- Median + send points left right: $O(N)$ at every tree level (smart)
- Construction time: $O(N \log N)$

1-NN query
- Traverse down tree to starting point: $O(\log N)$
- Maximum backtrack and traverse: $O(N)$ worst case
- Complexity range: $O(\log N) \rightarrow O(N)$

Under some assumptions on distribution of points, we get $O(\log N)$ but exponential in d (see citations in reading)
Complexity for N Queries

- Ask for nearest neighbor to each document
 \[N \text{ queries} \]
- Brute force 1-NN:
 \[O(N^2) \]
- kd-trees:
 \[O(N \log N) \rightarrow O(N^2) \]
 potentially large savings

Inspections vs. N and d

- $\log N$
- exponential

©Emily Fox 2015
K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is: $\mathcal{O}(k \log n)$

Approximate K-NN with KD Trees

- **Before**: Prune when distance to bounding box $> r$
- **Now**: Prune when distance to bounding box $> \frac{r}{\alpha}$, $\alpha > 1$
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r/α.
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.
Wrapping Up – Important Points

kd-trees
- Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation are crucial to answer returned

For both...
- High dimensional spaces are hard! $\text{large } d$
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N \gg 2^d$... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise \rightarrow Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task

What you need to know
- Document retrieval task
 - Document representation (bag of words)
 - tf-idf
- Nearest neighbor search
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large N
- kd-trees for nearest neighbor search
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large d
Acknowledgment

- This lecture contains some material from Andrew Moore’s excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials
- In particular, see:
 - http://grist.caltech.edu/sc4devo/.../files/sc4devo_scalable_datamining.ppt

Case Study 2: Document Retrieval

Locality-Sensitive Hashing
Random Projections for NN Search

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
April 14th, 2015
Using Hashing to Find Neighbors

• KD-trees are cool, but...
 – Non-trivial to implement efficiently
 – Problems with high-dimensional data
• Approximate neighbor finding...
 – Don’t find exact neighbor, but that’s OK for many apps, especially with Big Data
• What if we could use hash functions:
 – Hash elements into buckets:
 \[h(x) = i, \text{ for all } x \in T[h(x)=i] \text{ look for neighbors there} \]
 – Look for neighbors that fall in same bucket as \(x \):
 \[\text{even if } d(x,x') \text{ is low } \Rightarrow h(x) = h(x') \]
• But, by design...

Locality Sensitive Hashing (LSH)

• A LSH function \(h \) satisfies (for example), for some similarity function \(d \), for \(r > 0, \alpha > 1 \):
 – \(d(x,x') \leq r \), then \(P(h(x) = h(x')) \) is high
 – \(d(x,x') > \alpha r \), then \(P(h(x) = h(x')) \) is low
 – (in between, not sure about probability)
Random Projection Illustration

- Pick a random vector v:
 - Independent Gaussian coordinates
 - $v_i \sim \mathcal{N}(0,1)$
 - Define d-dim vector $[v_1, \ldots, v_d]$
 - Preserves separability for most vectors
 - Gets better with more random vectors

Multiple Random Projections: Approximating Dot Products

- Pick m random vectors $v^{(i)}$:
 - Independent Gaussian coordinates
 - Approximate dot products:
 - Cheaper, e.g., learn in smaller m dimensional space
 - $x \cdot y \approx \frac{1}{m} \sum_{i=1}^{m} \langle v^{(i)}(x), v^{(i)}(y) \rangle = \frac{1}{m} \sum_{i=1}^{m} \phi^{(i)}(x) \cdot \phi^{(i)}(y)$
 - Only need logarithmic number of dimensions!
 - N data points, approximate dot-product within $\varepsilon > 0$:
 - $m = O\left(\frac{\log N}{\varepsilon^2}\right)$
 - But all sparsity is lost
 - $v^{(i)}$ are dense
 - $\implies v^{(i)} \cdot x \neq 0$ for $\exists i$

©Emily Fox 2015
LSH Example: Sparser Random Projection for Dot Products

- Pick random vectors \(v^{(i)} \)
- Simple 0/1 projection: \(\phi_i(x) = \begin{cases} 1 & \text{if } \text{sign}(v_i \cdot x) \geq 0 \\ 0 & \text{if } \text{sign}(v_i \cdot x) < 0 \end{cases} \)

Now, each vector is approximated by a bit-vector

- Dot-product approximation:
 \[
 \frac{x \cdot y}{\|x\| \|y\|} = \cos \theta_{xy} \approx \cos \left(\pi \frac{\text{HammDist}(\phi(x), \phi(y))}{m} \right)
 \]

LSH for Approximate Neighbor Finding

- Very similar elements fall in exactly same bin:
- And, nearby bins are also nearby:

Simple neighbor finding with LSH:
- For bins \(b \) of increasing hamming distance to \(\phi(x) \):
 - Look for neighbors of \(x \) in bin \(b \)
- Stop when run out of time

- Pick \(m \) such that \(N/2^m \) is “smallish”
Hash Kernels: Even Sparser LSH for Learning

- Two big problems with random projections:
 - Data is sparse, but random projection can be a lot less sparse
 - You have to sample m huge random projection vectors
 - And, we still have the problem with new dimensions, e.g., new words
- **Hash Kernels**: Very simple, but powerful idea: combine sketching for learning with random projections
- Pick 2 hash functions:
 - h: Just like in Count-Min hashing
 - ξ: Sign hash function
 - Removes the bias found in Count-Min hashing (see homework)
- Define a “kernel”, a projection ϕ for x:

\[
\phi(x) = \sum_{j: h(j) = i} \xi(j)x_j
\]

Hash Kernels, Random Projections and Sparsity

- **Hash Kernel as a random projection**
- What is the random projection vector for coordinate i of ϕ:
 - $\text{What is } v(i)$? e.g. $\phi_i(y) = v_i(y)$?
 - Mostly 0, non-zero $v_j = h(j) = i$
 - Determined by $\xi(j)$
- Implicitly define projection by h and ξ, so no need to compute apriori and automatically deals with new dimensions
- Sparsity of ϕ, if x has s non-zero coordinates:

\[
\text{Sparsity of } x = s > \text{Sparsity of } \phi(x)
\]
What you need to know

• **Locality-Sensitive Hashing (LSH):** nearby points hash to the same or nearby bins
 - LSH uses random projections
 - Only $O(\log N/\varepsilon^2)$ vectors needed
 - But vectors and results are not sparse
 - Use LSH for nearest neighbors by mapping elements into bins
 - Bin index is defined by bit vector from LSH
 - Find nearest neighbors by going through bins

• **Hash kernels:**
 - Sparse representation for feature vectors
 - Very simple, use two hash functions
 - Can even use one hash function, and take least significant bit to define ξ
 - Quickly generate projection $\phi(x)$
 - Learn in projected space