Matrix Completion Problem

- Filling missing data?

\[X = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix} \]

- \(X_{ij} \) known for black cells
- \(X_{ij} \) unknown for white cells
- Rows index users
- Columns index movies

Well-approximated by rank \(k \) matrix

\[X \approx L \]

\[\mathbb{R}^{n \times m} \]
Matrix Completion via Rank Minimization

- Given observed values: \((u, v, r_{uv}) \in X\) for some \(r_{uv} = ?\)
- Find matrix \(\hat{\Theta}\)
- Such that: \(\hat{\Theta}_{uv} = r_{uv}\) \(\forall r_{uv} \neq ?\) \(\leftarrow\) all obs. ratings
 - \(\hat{\Theta}_{uv}\) fits \(r_{uv}\) perfectly
- But… want \(\hat{\Theta}\) to be low-rank
- Introduce bias: \(\min \text{ rank}(\hat{\Theta})\)
 \(\hat{\Theta}\) s.t. \(\hat{\Theta}_{uv} = r_{uv}\) \(\forall r_{uv} \neq ?\) for \(k < \min(r_{uv})\)
- Two issues: NP-hard, you can’t hope to get exact matching

Approximate Matrix Completion

- Minimize squared error:
 - (Other loss functions are possible)
 \[\min \sum (\hat{\Theta}_{uv} - r_{uv})^2 \]
 \(\hat{\Theta} \in \mathbb{R}^{k \times k}\)
- Choose rank \(k\):
 \[\hat{\Theta} = \mathbb{L} \mathbb{R} \]
- Optimization problem:
 \[\min \sum_{r_{uv}} (L_u \mathbb{R}_v - r_{uv})^2 \]
 non-convex opt. problem … local optima only
Coordinate Descent for Matrix Factorization

\[\min_{L,R} \sum_{(u,v):r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2 \]

- Fix movie factors, optimize for user factors
- First observation:

\[\min_{L_u \cdot R_v} \sum_{(u,v):r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2 = \text{set of movies user } u \text{ rated} \]

\[\min_{L_u \cdot R_v} \sum_{u \in V_u} (L_u \cdot R_v - r_{uv})^2 = \text{ind. opt. problem for each user} \]

\[\text{next side: data parallel problem} \]

Minimizing Over User Factors

- For each user \(u \):

\[\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2 \]

- In matrix form:

\[\| X \beta - y \|_2^2 \]

Think of as normal LS problem

- Second observation: Solve by
 - matrix inversion
 - gradient methods
Coordinate Descent for Matrix Factorization: Alternating Least-Squares

\[
\min_{L,R} \sum_{(u,v) : r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2
\]

- Fix movie factors, optimize for user factors
 - Independent least-squares over users
 \[
 \min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2
 \]
- Fix user factors, optimize for movie factors
 - Independent least-squares over movies
 \[
 \min_{R_v} \sum_{u \in U_v} (L_u \cdot R_v - r_{uv})^2
 \]

- System may be underdetermined:
 - Converges to

Effect of Regularization

\[
\min_{L,R} \sum_{(u,v) : r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2
\]

\[
X = L \cdot R
\]
What you need to know…

- Matrix completion problem for collaborative filtering
- Over-determined -> low-rank approximation
- Rank minimization is NP-hard
- Minimize least-squares prediction for known values for given rank of matrix
 - Must use regularization
- Coordinate descent algorithm = “Alternating Least Squares”

Case Study 4: Collaborative Filtering

SGD for Matrix Completion
Matrix-norm Minimization

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
February 13th, 2014
Stochastic Gradient Descent

\[
\min_{L,R} \frac{1}{2} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \frac{\lambda_u}{2} \|L\|_F^2 + \frac{\lambda_v}{2} \|R\|_F^2
\]

- Observe one rating at a time \(r_{uv} \)
- Gradient observing \(r_{uv} \):

Updates:

Local Optima v. Global Optima

- We are solving:

\[
\min_{L,R} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \lambda_u \|L\|_F^2 + \lambda_v \|R\|_F^2
\]

- We (kind of) wanted to solve:

Which is NP-hard…
- How do these things relate???
Eigenvalue Decompositions for PSD Matrices

- Given a (square) symmetric positive semidefinite matrix:
 - Eigenvalues:
 - Thus rank is:

- Approximation:
- Property of trace:
- Thus, approximate rank minimization by:

Generalizing the Trace Trick

- Non-square matrices ain’t got no trace
- For (square) positive semidefinite matrices, matrix factorization:
 - For rectangular matrices, singular value decomposition:
 - Nuclear norm:
Nuclear Norm Minimization

- Optimization problem:

- Possible to relax equality constraints:

- Both are convex problems!
 (solved by semidefinite programming)

Analysis of Nuclear Norm

- Nuclear norm minimization = convex relaxation of rank minimization:

\[
\begin{align*}
\min_{\Theta} \quad & \text{rank}(\Theta) \\
\text{subject to} \quad & r_{uv} = \Theta_{uv}, \forall r_{uv} \in X, r_{uv} \neq 0 \\
\min_{\Theta} \quad & ||\Theta||_* \\
\text{subject to} \quad & r_{uv} = \Theta_{uv}, \forall r_{uv} \in X, r_{uv} \neq 0
\end{align*}
\]

- Theorem [Candes, Recht '08]:
 - If there is a true matrix of rank k,
 - And, we observe at least

\[
C'k n^{1.2} \log n
\]

random entries of true matrix

- Then true matrix is recovered exactly with high probability via convex nuclear norm minimization!
 - Under certain conditions
Nuclear Norm Minimization versus Direct (Bilinear) Low Rank Solutions

- Nuclear norm minimization:
 \[\min_{\Theta} \sum_{u,v} (\Theta_{uv} - r_{uv})^2 + \lambda \|\Theta\|_* \]

 - Annoying because:

- Instead:
 \[\min_{L,R} \sum_{u,v} (L_{u} \cdot R_{v} - r_{uv})^2 + \lambda_u \|L\|_F^2 + \lambda_v \|R\|_F^2 \]

 - Annoying because:
 - But \(\|\Theta\|_* = \inf \left\{ \min_{L,R} \frac{1}{2}\|L\|_F^2 + \frac{1}{2}\|R\|_F^2 : \Theta = LR \right\} \)
 - So
 - And

- Under certain conditions [Burer, Monteiro ’04]

What you need to know…

- Stochastic gradient descent for matrix factorization

- Norm minimization as convex relaxation of rank minimization
 - Trace norm for PSD matrices
 - Nuclear norm in general

- Intuitive relationship between nuclear norm minimization and direct (bilinear) minimization
Case Study 4: Collaborative Filtering

Nonnegative Matrix Factorization
Projected Gradient

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
February 13th, 2014

©Emily Fox 2014

Matrix factorization solutions can be unintuitive…

- Many, many, many applications of matrix factorization
- E.g., in text data, can do topic modeling (alternative to LDA):

\[X = L R' \]

- Would like:
- But…
Nonnegative Matrix Factorization

\[X = LR' \]

- Just like before, but

\[\min_{L \geq 0, R \geq 0} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \lambda_u \|L\|_F^2 + \lambda_v \|R\|_F^2 \]

- Constrained optimization problem
 - Many, many, many, many solution methods… we’ll check out a simple one

Projected Gradient

- Standard optimization:
 - Want to minimize: \(\min_{\Theta} f(\Theta) \)
 - Use gradient updates:
 \[\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \eta \nabla f(\Theta^{(t)}) \]

- Constrained optimization:
 - Given convex set \(C \) of feasible solutions
 - Want to find minima within \(C \): \(\min_{\Theta \in C} f(\Theta) \)

- Projected gradient:
 - Take a gradient step (ignoring constraints):
 - Projection into feasible set:
Projected Stochastic Gradient Descent for Nonnegative Matrix Factorization

$$\min_{L \geq 0, R \geq 0} \frac{1}{2} \sum_{uv} (L_u \cdot R_v - r_{uv})^2 + \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2$$

- Gradient step observing r_{uv} ignoring constraints:
 $$\begin{bmatrix} \tilde{L}_{u}^{(t+1)} \\ \tilde{R}_{v}^{(t+1)} \end{bmatrix} \leftarrow \begin{bmatrix} (1 - \eta_t \lambda_u) L_{u}^{(t)} - \eta_t \epsilon_t R_{v}^{(t)} \\ (1 - \eta_t \lambda_v) R_{v}^{(t)} - \eta_t \epsilon_t L_{u}^{(t)} \end{bmatrix}$$

- Convex set:
- Projection step:

What you need to know…

- In many applications, want factors to be nonnegative
- Corresponds to constrained optimization problem
- Many possible approaches to solve, e.g., projected gradient
Cold-Start Problem

- **Challenge**: Cold-start problem (new movie or user)
- **Methods**: use features of movie/user
Cold-Start Problem More Formally

- Consider a new user u' and predicting that user’s ratings
 - No previous observations
 - Objective considered so far:
 \[
 \min_{L, R} \frac{1}{2} \sum_{u, v} (L_u \cdot R_v - r_{uv})^2 + \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2
 \]

- Optimal user factor:

- Predicted user ratings:

An Alternative Formulation

- A simpler model for collaborative filtering
 - We would not have this issue if we assumed all users were identical

- What about for new movies? What if we had side information?

- What dimension should w be?
 - Fit linear model:

- Minimize:
Personalization

- If we don’t have any observations about a user, use wisdom of the crowd
 - Address cold-start problem

- Clearly, not all users are the same
- Just as in personalized click prediction, consider model with global and user-specific parameters

- As we gain more information about the user, forget the crowd

User Features…

- In addition to movie features, may have information about the user:

 - Combine with features of movie:
 - Unified linear model:
Feature-based Approach versus Matrix Factorization

- Feature-based approach:
 - Feature representation of user and movies fixed
 - Can address cold-start problem

- Matrix factorization approach:
 - Suffers from cold-start problem
 - User & movie features are learned from data

- A unified model:

Unified Collaborative Filtering via SGD

$$\min_{L,R,w_0} \frac{1}{2} \sum_{u,v} (L_u \cdot R_v + (w + w_u) \cdot \phi(u,v) - r_{uv})^2$$

$$+ \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2 + \frac{\lambda_w}{2} ||w||_2^2 + \frac{\lambda_{w_u}}{2} \sum_u ||w_u||_2^2$$

- Gradient step observing r_{uv}
 - For L,R
 $$\begin{bmatrix} L_u^{(t+1)} \\ R_v^{(t+1)} \end{bmatrix} \leftarrow \begin{bmatrix} (1 - \eta_t \lambda_u) L_u^{(t)} - \eta_t \epsilon_t R_v^{(t)} \\ (1 - \eta_t \lambda_v) R_v^{(t)} - \eta_t \epsilon_t L_u^{(t)} \end{bmatrix}$$
 - For w and w_u:
What you need to know…

- Cold-start problem
- Feature-based methods for collaborative filtering
 - Help address cold-start problem
- Unified approach

Case Study 4: Collaborative Filtering

Connections with Probabilistic Matrix Factorization

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
February 13th, 2014
Probabilistic Matrix Factorization (PMF)

- A generative process:
 - Pick user factors
 - Pick movie factors
 - For each (user, movie) pair observed:
 - Pick rating as $L_u R_v + \text{noise}$

- Joint probability:

PMF Graphical Model

\[P(L, R \mid X) \propto P(L)P(R)P(X \mid L, R) \]

- Graphically:
Maximum A Posteriori for Matrix Completion

\[P(L, R | X) \propto P(L, R, X) = p(L)p(R)p(X | L, R) \]

\[\propto e^{\frac{-1}{2\sigma_u^2} \sum_{u=1}^{n} \sum_{i=1}^{k} L_{ui}^2} \sum_{i=1}^{k} \sum_{v=1}^{m} R_{vi}^2} \frac{1}{2\sigma_r^2} \sum_{r_{uv}} (L_{uv} - R_{uv} - r_{uv})^2 \]

MAP versus Regularized Least-Squares for Matrix Completion

- **MAP under Gaussian Model:**
 \[
 \max_{L,R} \log P(L, R | X) = \]
 \[- \frac{1}{2\sigma_u^2} \sum_u \sum_i L_{ui}^2 - \frac{1}{2\sigma_v^2} \sum_v \sum_i R_{vi}^2 - \frac{1}{2\sigma_r^2} \sum_{r_{uv}} (L_{uv} - R_{uv} - r_{uv})^2 + \text{const} \]

- **Least-squares matrix completion with L_2 regularization:**
 \[
 \min_{L,R} \frac{1}{2} \sum_{u,v} (L_{uv} - R_{uv} - r_{uv})^2 + \frac{\lambda_u}{2} ||L||^2_F + \frac{\lambda_v}{2} ||R||^2_F \]

- Understanding as a probabilistic model is very useful! E.g.,
 - Change priors
 - Incorporate other sources of information or dependencies
What you need to know…

- Probabilistic model for collaborative filtering
 - Models, choice of priors
 - MAP equivalent to optimization for matrix completion