Case Study 2: Document Retrieval

Task Description: Finding Similar Documents

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
January 21st, 2014

©Emily Fox 2014

Task 1: Find Similar Documents

- To begin...
 - Input: Query article
 - Output: Set of k similar articles
k-Nearest Neighbor

- **Articles**: \(X = \{ x^1, \ldots, x^N \}, \; x^i \in \mathbb{R}^d \)
- **Query**: \(x \in \mathbb{R}^d \)

k-NN

- **Goal**: Find \(k \) articles in \(X \) closest to \(x \)
- **Formulation**:
 \[
 X^{\text{NN}} = \{ x^{\text{NN}_1}, \ldots, x^{\text{NN}_k} \} \subseteq X
 \]
 s.t. \(\forall \; x^i \in X \setminus X^{\text{NN}} \), \(d(x^i, x) \geq \max_{x^{\text{NN}_j}, x} d(x^{\text{NN}_j}, x) \)

Naïve approach: Brute force search
- Given a query point \(x \)
- Scan through each point \(x^i \)
- \(O(N) \) distance computations per 1-NN query!
- \(O(N \log k) \) per k-NN query!

What if \(N \) is huge???
(and many queries)
Smarter approach: *kd-trees*
- Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
- Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.

kd-trees work “well” in “low-medium” dimensions
- We’ll get back to this…

KD-Tree Construction

3. Keep one additional piece of information at each node:
 - The (tight) bounds of the points at or below this node.
Nearest Neighbor with KD Trees

- Traverse the tree looking for the nearest neighbor of the query point.

- When we reach a leaf node:
 - Compute the distance to each point in the node.
Then backtrack and try the other branch at each node visited.

Each time a new closest node is found, update the distance bound. Dist. from x to closest pt of bounding box < r, so search for NN.
Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor

No article in this box could be the NN.
Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - Prune parts of the tree that could NOT include the nearest neighbor

Complexity

- For (nearly) balanced, binary trees...
- Construction
 - Size: \(2N-1 \rightarrow O(N)\)
 - Depth: \(O(\log N)\)
 - Median + send points left right: \(O(N)\) at every level of tree (smart)
 - Construction time: \(O(N\log N)\)
- 1-NN query
 - Traverse down tree to starting point: \(O(\log N)\) go to leaf node
 - Maximum backtrack and traverse: \(O(N)\) worst case
 - Complexity range: \(O(\log N) \Rightarrow O(N)\)

- Under some assumptions on distribution of points, we get \(O(\log N)\) but exponential in \(d\) (see citations in reading)
Complexity

Ask for nearest neighbor to each document
N queries

Brute force 1-NN:
$O(N^2)$

kd-trees:
$O(N \log N) \rightarrow O(N^2)$

potentially large savings!
Inspections vs. N and d

- $\log N$ vs. N
- Exponential in d

K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is: $O(k \log N)$
Approximate K-NN with KD Trees

- **Before**: Prune when distance to bounding box > \(r \)
- **Now**: Prune when distance to bounding box > \(\frac{r}{d} \) for \(d > 1 \)
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance \(r \), then there is no neighbor closer than \(r/\alpha \).
- In practice this bound is loose... Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

Wrapping Up – Important Points

kd-trees
- Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation are crucial to answer returned

For both
- High dimensional spaces are hard!
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... \(N \gg 2^d \)... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise... Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task
What you need to know

- Document retrieval task
 - Document representation (bag of words)
 - tf-idf

- Nearest neighbor search
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large N

- kd-trees for nearest neighbor search
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large d

Acknowledgment

- This lecture contains some material from Andrew Moore’s excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials

- In particular, see:
 - http://grist.caltech.edu/sc4devo/.../files/sc4devo_scalable_datamining.ppt
Using Hashing to Find Neighbors

- KD-trees are cool, but...
 - Non-trivial to implement efficiently
 - Problems with high-dimensional data
- Approximate neighbor finding...
 - Don’t find exact neighbor, but that’s OK for many apps, especially with Big Data
- What if we could use hash functions:
 - Hash elements into buckets:
 \[h: \mathcal{X} \rightarrow \{1, \ldots, m\} \]

 \[T: \{ \text{Mary}, \text{ObamaCare}, \text{Amb} \} \]
- Look for neighbors that fall in the same bucket as \(x \):
 - For all \(y \in T[h(x) = i] \)
 - Look for neighbors there
- But, by design...
 \[p(h(x) = h(x')) = \frac{1}{m} \quad \forall x' \]
 \[\text{even if } d(x, x') \text{ is low} \Leftrightarrow h(x) \approx h(x') \]
Locality Sensitive Hashing (LSH)

A LSH function h satisfies (for example), for some similarity function d, for $r > 0$, $\alpha > 1$:

- $d(x, x') \leq r$, then $P(h(x) = h(x'))$ is high
- $d(x, x') > \alpha r$, then $P(h(x) = h(x'))$ is low
- (in between, not sure about probability)

Random Projection Illustration

- Pick a random vector v:
 - Independent Gaussian coordinates
 - $V \sim \mathcal{N}(0, 1)$
- Preserves separability for most vectors
 - Gets better with more random vectors

©Emily Fox 2014
Multiple Random Projections: Approximating Dot Products

- Pick \(m \) random vectors \(v^{(i)} \):
 - Independent Gaussian coordinates
- Approximate dot products:
 - Cheaper, e.g., learn in smaller \(m \) dimensional space
 - Only need logarithmic number of dimensions!

\[
\phi(x) = \left(v^{(1)} \cdot x, v^{(2)} \cdot x, \ldots, v^{(m)} \cdot x \right)
\]

\[m = O\left(\frac{\log N}{\epsilon^2} \right)\]

- But all sparsity is lost
 - \(v^{(i)} \) are dense w.p. \(1 \)
 - \(v^{(i)} \cdot x \neq 0 \) w.p. \(1 \)

LSH Example: Sparser Random Projection for Dot products

- Pick random vectors \(v^{(i)} \sim N(0, I) \)
- Simple 0/1 projection:
 \[d(x) = \begin{cases} 1 & \text{if sign}(v^{(i)} \cdot x) \geq 0 \\ 0 & \text{if sign}(v^{(i)} \cdot x) < 0 \end{cases} \]

Now, each vector is approximated by a bit-vector

\[d(x) = (0, 0, 1, 0, 1, 1, 0)\]

Dot-product approximation:

\[\frac{x \cdot y}{\|x\| \|y\|} = \cos \theta_{xy} \approx \cos \left(\frac{\text{HammDist}(\phi(x), \phi(y))}{m} \right)\]
LSH for Approximate Neighbor Finding

- Very similar elements fall in exactly same bin:
 \[x \rightarrow T[h(x)] \] turn bit vector into integer

\[2^m \] bins

- And, nearby bins are also nearby:
 \[\text{in terms of Hamming Dist.} \]

- Simple neighbor finding with LSH:
 - For bins \(b \) of increasing hamming distance to \(h(x) \):
 - Look for neighbors of \(x \) in bin \(b \)
 - \(\forall y \text{ in } T[b] \), compute \(d(x, y) \) and keep closest
 - Stop when run out of time

- Pick \(m \) such that \(N/2^m \) is "smallish"

Hash Kernels: Even Sparser LSH for Learning

ASIDE: How do hash kernels relate to random projections?

- Two big problems with random projections:
 - Data is sparse, but random projection can be a lot less sparse
 - You have to sample \(m \) huge random projection vectors
 - And, we still have the problem with new dimensions, e.g., new words

- Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections
- Pick 2 hash functions:
 - \(h \) : Just like in Min-Count hashing
 - \(\xi \) : Sign hash function
 - Removes the bias found in Min-Count hashing (see homework)

- Define a “kernel”, a projection \(\phi \) for \(x \):
 \[\bar{\phi}(x) = \sum_{j: h[j] = x} \xi_j X_j \]
Hash Kernels, Random Projections and Sparsity

\[\phi_i(x) = \sum_{j: h(j) = i} \xi(j)x_j \]

- Hash Kernel as a random projection:
 - \(X = 10, 0, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 0\)
 - \(\phi(10, 0, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 0) = \sum_{j: h(j) = 1} \xi(j)x_j\)

- Random projection vector for coordinate \(i\) of \(\phi\):

\[v(i) \text{ mostly } 0, \quad \text{non-zero } \forall j: h(j) = i \]

\[v(i) = \begin{cases} \xi(j)x_j & \text{here, } v(i) \in \{+1, -1\} \\ 0 & \text{else} \end{cases} \]

- Implicitly define projection by \(h\) and \(\xi\), so no need to compute apriori and automatically deal with new dimensions

- Sparsity of \(\phi\), if \(x\) has \(s\) non-zero coordinates:

\[\text{Sparsity of } X = s \geq \text{Sparsity of } \phi(x) \]

What you need to know

- Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins
 - LSH use random projections
 - Only \(O(\log N/\varepsilon^2)\) vectors needed
 - But vectors and results are not sparse

- Use LSH for nearest neighbors by mapping elements into bins
 - Bin index is defined by bit vector from LSH
 - Find nearest neighbors by going through bins

- Hash kernels:
 - Sparse representation for feature vectors
 - Very simple, use two hash function
 - Can even use one hash function, and take least significant bit to define \(\xi\)
 - Quickly generate projection \(\phi(x)\)
 - Learn in projected space