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Convergence rate of SGD 

n  Theorem:  
¨  (see Nemirovski et al ‘09 from readings) 
¨  Let f be a strongly convex stochastic function 
¨  Assume gradient of f is Lipschitz continuous and bounded 

¨  Then, for step sizes: 

¨  The expected loss decreases as O(1/t): 
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Convergence rates for gradient 
descent/ascent versus SGD 

n  Number of Iterations to get to accuracy 

n  Gradient descent: 
¨  If func is strongly convex: O(ln(1/ϵ)) iterations 
 

n  Stochastic gradient descent: 
¨  If func is strongly convex: O(1/ϵ) iterations 

n  Seems exponentially worse, but much more subtle: 
¨  Total running time, e.g., for logistic regression: 

n  Gradient descent: 
n  SGD: 
n  SGD can win when we have a lot of data 

¨  And, when analyzing true error, situation even more subtle… expected 
running time about the same, see readings 
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Motivating AdaGrad (Duchi, Hazan, Singer 2011) 

n  Assuming               , standard stochastic (sub)gradient 
descent updates are of the form: 

n  Should all features share the same learning rate? 

n  Often have high-dimensional feature spaces 
¨  Many features are irrelevant 
¨  Rare features are often very informative 

n  Adagrad provides a feature-specific adaptive learning rate by 
incorporating knowledge of the geometry of past observations 
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Why Adapt to Geometry? 
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Not All Features are Created Equal 

n  Examples: 
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Motivation

Text data:

The most unsung birthday

in American business and

technological history

this year may be the 50th

anniversary of the Xerox

914 photocopier.

a

aThe Atlantic, July/August 2010.

High-dimensional image features

Other motivation: selecting advertisements in online advertising,
document ranking, problems with parameterizations of many
magnitudes...
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Images from Duchi et al. ISMP 2012 slides 

Projected Gradient 

n  Brief aside… 

n  Consider an arbitrary feature space 

n  If   , can use projected gradient for (sub)gradient 
descent 
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Regret Minimization 

n  How do we assess the performance of an online algorithm? 

n  Algorithm iteratively predicts 
n  Incur loss   
n  Regret:  

What is the total incurred loss of algorithm relative to the best 
choice of        that could have been made retrospectively 
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Regret Bounds for Standard SGD  

n  Standard projected gradient stochastic updates: 

n  Standard regret bound: 
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Projected Gradient using Mahalanobis 

n  Standard projected gradient stochastic updates: 

n  What if instead of an L2 metric for projection, we considered 
the Mahalanobis norm 

w(t+1) = arg min
w2W

||w � (w(t) � ⌘gt)||22

w(t+1) = arg min
w2W

||w � (w(t) � ⌘A�1gt)||2A
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Mahalanobis Regret Bounds 

n  What A to choose?   

n  Regret bound now: 

n  What if we minimize upper bound on regret w.r.t. A in hindsight? 
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Mahalanobis Regret Minimization 

n  Objective: 

n  Solution:  

    For proof, see Appendix E, Lemma 15 of Duchi et al. 2011. 
     Uses “trace trick” and Lagrangian. 
 
n  A defines the norm of the metric space we should be operating in 
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AdaGrad Algorithm 

n  At time t, estimate optimal (sub)gradient modification A by 

n  For d large, At is computationally intensive to compute.  Instead, 

n  Then, algorithm is a simple modification of normal updates: 
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AdaGrad in Euclidean Space 

n  For       , 
 
n  For each feature dimension, 

    where  

n  That is, 

n  Each feature dimension has it’s own learning rate! 
¨  Adapts with t 
¨  Takes geometry of the past observations into account 
¨  Primary role of η is determining rate the first time a feature is encountered  
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AdaGrad Theoretical Guarantees 

n  AdaGrad regret bound: 

n  So, what does this mean in practice? 

n  Many cool examples.  This really is used in practice! 
n  Let’s just examine one… 
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AdaGrad Theoretical Example 

n  Expect to out-perform when gradient vectors are sparse 

n  SVM hinge loss example:  
                                                          where 

n  If xj
t ≠ 0 with probability 

n  Previously best known method:  

 
 

©Emily Fox 2014 38 

ft(w) = [1� yt
⌦
x

t,w
↵
]+ x

t 2 {�1, 0, 1}d

E
"
f

 
1

T

TX

t=1

w(t)

!#
� f(w⇤

) = O
✓ ||w⇤||1p

T
·max{log d, d1�↵/2}

◆

E
"
f

 
1

T

TX

t=1

w(t)

!#
� f(w⇤) = O

✓ ||w⇤||1p
T

·
p
d

◆

/ j�↵, ↵ > 1

Neural Network Learning
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SGD
GPU
Downpour SGD
Downpour SGD w/Adagrad
Sandblaster L−BFGS

(Dean et al. 2012)

Distributed, d = 1.7 · 109 parameters. SGD and AdaGrad use 80
machines (1000 cores), L-BFGS uses 800 (10000 cores)
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Neural Network Learning

Wildly non-convex problem:

f(x; ⇠) = log (1 + exp (h[p(hx1, ⇠1i) · · · p(hx
k

, ⇠

k

i)], ⇠0i))

where

p(↵) =

1

1 + exp(↵)

�1 �2 �3 �4�5

x1 x2 x3 x4 x5

p(hx1, �1i)

Idea: Use stochastic gradient methods to solve it anyway
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Neural Network Learning 

n  Very non-convex problem, but use SGD methods anyway 
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What you should know about Logistic 
Regression (LR) and Click Prediction 

n  Click prediction problem: 
¨  Estimate probability of clicking 
¨  Can be modeled as logistic regression 

n  Logistic regression model: Linear model 
n  Gradient ascent to optimize conditional likelihood 
n  Overfitting + regularization 
n  Regularized optimization 

¨ Convergence rates and stopping criterion 
n  Stochastic gradient ascent for large/streaming data 

¨ Convergence rates of SGD 
n  AdaGrad motivation, derivation, and algorithm 
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