Case Study 3: fMRI Prediction

“Scalable” LASSO Solvers:
- Parallel SCD (Shotgun)
- Parallel SGD
- Averaging Solutions
- ADMM

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
February 6th, 2014

©Emily Fox 2014

Scaling Up LASSO Solvers

- A simple SCD for LASSO (Shooting)
 - Your HW, a more efficient implementation! 😊
 - Analysis of SCD
- Parallel SCD (Shotgun)
- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD)
 - Parallel independent solutions then averaging
- ADMM
Stochastic Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence
 - Pick a coordinate \(j \) at random
 - Set: \[
 \hat{\beta}_j = \begin{cases}
 (c_j + \lambda)/a_j & c_j < -\lambda \\
 0 & c_j \in [-\lambda, \lambda] \\
 (c_j - \lambda)/a_j & c_j > \lambda
 \end{cases}
 \]
 - Where:
 \[
 c_j = 2 \sum_{i=1}^{N} (x_i^j)^2, \quad a_j = 2 \sum_{i=1}^{N} x_i^j (y_i - \beta_j x_i^j) \]

Cost per iteration \(O(N) \)
Can be done more efficiently. Proof: HW!

Shotgun: Parallel SCD [Bradley et al `11]

Lasso: \[
\min_{\beta} F(\beta) \quad \text{where} \quad F(\beta) = \|X\beta - y\|^2 + \lambda \|\beta\|_1
\]

Shotgun (Parallel SCD)
While not converged,
- On each of \(P \) processors,
- Choose random coordinate \(j \),
- Update \(\beta_j \) (same as for Shooting)

Features are uncorrelated
Features are highly corr.
Is SCD inherently sequential?

Lasso: \[\min_{\beta} F(\beta) \] where \[F(\beta) = \|X\beta - y\|_2^2 + \lambda \|\beta\|_1 \]

Coordinate update:
\[\beta_j \leftarrow \beta_j + \delta \beta_j \] (closed-form minimization)

Collective update:
\[\Delta \beta = \begin{pmatrix} \delta \beta_i \\ 0 \\ 0 \\ \delta \beta_j \\ 0 \end{pmatrix} \]

Convergence Analysis

Lasso: \[\min_{\beta} F(\beta) \] where \[F(\beta) = \|X\beta - y\|_2^2 + \lambda \|\beta\|_1 \]

Theorem: Shotgun Convergence
Assume \[P < \rho/\rho + 1 \]
where \[\rho = \text{spectral radius of } XX^T \]

\[E\left[F(\beta^{(T)})\right] - F(\beta^*) \leq P \left(\frac{1}{2} \|\beta^*\|_2^2 + F(\beta^{(0)}) \right) \]
\[TP \]

\[P \]

Nice case: Uncorrelated features
\[\rho = \frac{1}{P} \Rightarrow P_{\max} = \frac{1}{P} \]

Bad case: Correlated features
\[\rho = \frac{1}{P} \Rightarrow P_{\max} = 1 \text{ (at worst)} \]
Stepping Back…

- **Stochastic coordinate ascent**
 - Optimization: pick a coord. j, find min β_j
 - Parallel SCD:
 - pick P coord.
 - Issue: coordinates may interfere on coord.
 - Solution: bound possible interference based ρ

- **Natural counterpart:**
 - Optimization: SGD
 - Parallel
 - Issue: can interfere on all coord.
 - Solution: bound interference

Parallel SGD with No Locks

- **Each processor in parallel:**
 - Pick data point i at random
 - For $j = 1 \ldots p$:
 $$ \beta_j \leftarrow \beta_j - \eta \nabla F(x^i; \beta)_j $$

- Assume atomicity of: $\beta_j \leftarrow \beta_j + a$
 - other interferences

©Emily Fox 2014
Addressing Interference in Parallel SGD

- Key issues:
 - Old gradients
 - Processors overwrite each other's work

- Nonetheless:
 - Can achieve convergence and some parallel speedups
 - Proof uses weak interactions, but through sparsity of data points

Problem with Parallel SCD and SGD

- Both Parallel SCD & SGD assume access to current estimate of weight vector

- Works well on shared memory machines

- Very difficult to implement efficiently in distributed memory

- Open problem: Good parallel SGD and SCD for distributed setting…
 - Let's look at a trivial approach
Simplest Distributed Optimization Algorithm Ever Made

- Given N data points & P machines
- Stochastic optimization problem:
- Distribute data:
 - Solve problems independently
 - Merge solutions
 - Why should this work at all????

For Convex Functions…

- Convexity:
 - Thus:
 Hopefully…

- Convexity only guarantees:

- But, estimates from independent data!

Analysis of Distribute-then-Average

[Zhang et al. ’12]

- Under some conditions, including strong convexity, lots of smoothness, and more…

- If all data were in one machine, converge at rate:

- With P machines, converge at a rate:
Tradeoffs, tradeoffs, tradeoffs,…

- Distribute-then-Average:
 - "Minimum possible" communication
 - Bias term can be a killer with finite data
 - Issue definitely observed in practice
 - Significant issues for L1 problems:

- Parallel SCD or SGD
 - Can have much better convergence in practice for multicore setting
 - Preserves sparsity (especially SCD)
 - But, hard to implement in distributed setting

Alternating Directions Method of Multipliers

- A tool for solving convex problems with separable objectives:

- LASSO example:

 - Know how to minimize \(f(\beta) \) or \(g(\beta) \) separately
ADMM Insight

- Try this instead:
 - Solve using method of multipliers
 - Define the augmented Lagrangian:

 □ Issue: L2 penalty destroys separability of Lagrangian
 □ Solution: Replace minimization over (x, z) by alternating minimization

ADMM Algorithm

- Augmented Lagrangian:

\[L_\rho(x, z, y) = f(x) + g(z) + y^T(x - z) + \frac{\rho}{2} \|x - z\|^2 \]

- Alternate between:
 1. \(x \leftarrow \)
 2. \(z \leftarrow \)
 3. \(y \leftarrow \)
ADMM for LASSO

Objective:

$\ell_\rho(x, z, y) = f(x) + g(z) + y^T(x - z) + \frac{\rho}{2}||x - z||^2$

Augmented Lagrangian:

$L_\rho(\beta, z, a) =$

Alternate between:

1. $\beta \leftarrow$
2. $z \leftarrow$
3. $a \leftarrow$

ADMM Wrap-Up

When does ADMM converge?
- Under very mild conditions
- Basically, f and g must be convex

ADMM is useful in cases where
- $f(x) + g(x)$ is challenging to solve due to coupling
- We can minimize
 - $f(x) + (x-a)^2$
 - $g(x) + (x-a)^2$

Reference
What you need to know

- A simple SCD for LASSO (Shooting)
 - Your HW, a more efficient implementation! 😊
 - Analysis of SCD
- Parallel SCD (Shotgun)
- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD)
 - Parallel independent solutions then averaging
- ADMM
 - General idea
 - Application to LASSO