Case Study 3: fMRI Prediction

“Scalable” LASSO Solvers:
Parallel SCD (Shotgun)
Parallel SGD
Averaging Solutions
ADMM

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
February 6th, 2014

©Emily Fox 2014

Scaling Up LASSO Solvers

- A simple SCD for LASSO (Shooting)
 - Your HW, a more efficient implementation! 😊
 - Analysis of SCD
- Parallel SCD (Shotgun)
- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD)
 - Parallel independent solutions then averaging
- ADMM

©Emily Fox 2014
Stochastic Coordinate Descent for LASSO (aka Shooting Algorithm)

Repeat until convergence

- Pick a coordinate j at random
 - Set:
 \[\beta_j = \begin{cases}
 (c_j + \lambda)/a_j & c_j < -\lambda \\
 0 & c_j \in [-\lambda, \lambda] \\
 (c_j - \lambda)/a_j & c_j > \lambda
 \end{cases} \]
 - Where:
 \[a_j = 2 \sum_{i=1}^{N} (x_i^j)^2 \]
 \[c_j = 2 \sum_{i=1}^{N} x_i^j (y_i - \beta^T x_i^T) \]

Can be done more efficiently. Proof: HW!

Shotgun: Parallel SCD [Bradley et al '11]

Lasso: \(\min_{\beta} F(\beta) \) where \(F(\beta) = ||X\beta - y||^2 + \lambda ||\beta||_1 \)

Shotgun (Parallel SCD)

While not converged,
- On each of P processors,
 - Choose random coordinate j,
 - Update β_j (same as for Shooting)
Is SCD inherently sequential?

Lasso: \(\min_{\beta} F(\beta) \) where \(F(\beta) = \| X \beta - y \|_2^2 + \lambda \| \beta \|_1 \)

Coordinate update:
\[
\beta_j \leftarrow \beta_j + \delta \beta_j
\]
(closed-form minimization)

Collective update:
\[
\Delta \beta = \begin{pmatrix}
\delta \beta_j \\
0 \\
0 \\
\delta \beta_j \\
0
\end{pmatrix}
\]

Convergence Analysis

Lasso: \(\min_{\beta} F(\beta) \) where \(F(\beta) = \| X \beta - y \|_2^2 + \lambda \| \beta \|_1 \)

Theorem: Shotgun Convergence
Assume \(P < \rho/P + 1 \)
where \(\rho = \) spectral radius of \(XX^T \)

\[
E \left[F(\beta) \right] - F(\beta^*) \leq P \left(\frac{1}{2} \| \beta^* \|_2^2 + F(\beta^{(0)}) \right)
\]

Nice case:
Uncorrelated features
\(\rho = \frac{1}{P} \Rightarrow P_{\text{max}} = \frac{1}{P} \)

Bad case:
Correlated features
\(\rho = \frac{1}{P} \Rightarrow P_{\text{max}} = 1 \) (at worst)

There are interferences in these updates if features are corr. Can we quantify this?
Stepping Back…

- Stochastic coordinate ascent
 - Optimization: pick a coord. j, find min β_j
 - Parallel SCD:
 - Pick P coord.
 - Issue: coordinates may interfere on P coord.
 - Solution: spectral bound possible interference based P

- Natural counterpart: SGD
 - Optimization: pick a datapoint i, $\beta \leftarrow \beta - \eta \nabla F(x^i; \beta)$
 - Parallel: pick P datapoints + ind. update β
 - Issue: can interfere on all coord.
 - Solution: bound interference by exploiting sparsity in X

Parallel SGD with No Locks

- Each processor in parallel:
 - Pick data point i at random
 - For $j = 1 \ldots p$:
 $$\beta_j \leftarrow \beta_j - \eta \nabla F(x^i; \beta)_j$$

- Assume atomicity of: $\beta_j \leftarrow \beta_j + \alpha$
 - other interferences
Addressing Interference in Parallel SGD

- **Key issues:**
 - Old gradients
 - Processors overwrite each other’s work

- **Nonetheless:**
 - Can achieve convergence and some parallel speedups
 - Proof uses weak interactions, but through sparsity of data points

Problem with Parallel SCD and SGD

- **Both Parallel SCD & SGD assume access to current estimate of weight vector**
- Works well on shared memory machines
- Very difficult to implement efficiently in distributed memory
- Open problem: Good parallel SGD and SCD for distributed setting…
 - Let’s look at a trivial approach
Simplest Distributed Optimization
Algorithm Ever Made

- Given N data points & P machines
- Stochastic optimization problem:
 $\min_{\beta} \frac{1}{N} \sum_{i=1}^{N} F(x_i; \beta)$
- Distribute data: P machines solves a problem D_k
 $|D_k| = \frac{N}{P} = n$
 Randomly assign data P_1, ..., P_p
 Solve problems independently
 $\beta^{(k)} = \min_{\beta} \frac{1}{n} \sum_{x \in D_k} F(x; \beta)$
- Merge solutions
 $\bar{\beta} = \frac{1}{P} \sum_k \beta^{(k)}$
- Why should this work at all????

For Convex Functions…

- Convexity:
 $F(\beta_1) + F(\beta_2) \geq F(\bar{\beta})$
- Thus:
 $\max (F(\beta_1), F(\beta_2)) \geq F(\bar{\beta})$
Hopefully…

- Convexity only guarantees:
 \[F(\hat{\beta}) \leq \max_k F(\beta^k) \]
- But, estimates from independent data!

\[\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4 \]

Can we leverage this to improve this bound?

Analysis of Distribute-then-Average

[Zhang et al. '12]

- Under some conditions, including strong convexity, lots of smoothness, and more…
 \[\hat{\beta}_n = \arg\min_{\beta} \frac{1}{N} \sum_{i=1}^{N} F(x_i; \beta) \]
- If all data were in one machine, converge at rate:
 \[E[\|\hat{\beta}_n - \beta^*\|^2] = O\left(\frac{1}{N}\right) \]
- With \(P \) machines, converge at a rate:
 \[E[\|\hat{\beta} - \beta^*\|^2] = O\left(\frac{1}{N} + \frac{1}{n^2}\right) \]

\(n \) obs. per machine
\(N \) obs.
\(P \) proc.

\(\frac{n}{P} \) unavoidable "bias" from parallelism

\(\frac{1}{n^2} \) negligible compared to \(\frac{1}{N} \). great parallelism

\(\frac{1}{N} \) hard observation.
Tradeoffs, tradeoffs, tradeoffs,…

- Distribute-then-Average:
 - “Minimum possible” communication
 - Bias term can be a killer with finite data
 - Issue definitely observed in practice
 - Significant issues for L1 problems:
 - sparsity patterns in machine i can be very different from those in machine j => average β can lose sparsity

- Parallel SCD or SGD
 - Can have much better convergence in practice for multicore setting
 - Preserves sparsity (especially SCD)
 - But, hard to implement in distributed setting

Alternating Directions Method of Multipliers

- A tool for solving convex problems with separable objectives:
 \[
 \min_x \sum f(x) + g(x)
 \]

- LASSO example:
 \[
 \min \|y - X\beta\|_2^2 + \lambda \|\beta\| \]

- Know how to minimize $f(\beta)$ or $g(\beta)$ separately
 - coupling presents challenges
ADMM Insight

- Try this instead:
 \[
 \min_{x,z} \left\{ f(x) + g(z) \right\} \quad \text{s.t.} \quad x = z
 \]
 Still convex!

- Solve using method of multipliers
- Define the augmented Lagrangian:
 \[
 \mathcal{L}_\rho(x,z,y) = f(x) + g(z) + y^T(x-z) + \frac{\rho}{2} \|x-z\|^2
 \]

 - Issue: L2 penalty destroys separability of Lagrangian
 - Solution: Replace minimization over \((x, z)\) by alternating minimization

ADMM Algorithm

- Augmented Lagrangian:
 \[
 L_\rho(x,z,y) = f(x) + g(z) + y^T(x-z) + \frac{\rho}{2} \|x-z\|^2
 \]

- Alternate between:
 1. \(x \leftarrow \arg\min_x L_\rho(x,z,y)\)
 2. \(z \leftarrow \arg\min_z L_\rho(x,z,y)\)
 3. \(y \leftarrow y + \rho(x-z)\)
ADMM for LASSO

\[L_\rho(x, z, y) = f(x) + g(z) + y^T (x - z) + \frac{\rho}{2} ||x - z||^2 \]

- **Objective:**
 \[\min_{\beta, z} \left\{ \frac{1}{2} ||x - X\beta||^2 + \lambda \|z\|_1 \right\} \text{ s.t. } \beta = z \]

- **Augmented Lagrangian:**
 \[L_\rho(\beta, z, a) = \frac{1}{2} ||y - X\beta||^2 + \lambda \|z\|_1 + a^T (\beta - z) + \frac{\rho}{2} \|\beta - z\|_2^2 \]

- **Alternate between:**
 1. \[\beta \leftarrow \arg\min_\beta L_\rho(\beta, z, a) = (X^T X + \rho I)^{-1} (X^T y + \rho z - a) \]
 2. \[z \leftarrow \arg\min_z L_\rho(\beta, z, a) = S(\beta + \frac{a}{\rho}, \frac{1}{\rho}) \]
 3. \[a \leftarrow a + \rho (\beta - z) \]

Reference

ADMM Wrap-Up

- **When does ADMM converge?**
 - Under very mild conditions
 - Basically, \(f \) and \(g \) must be convex

- **ADMM is useful in cases where**
 - \(f(x) + g(x) \) is challenging to solve due to coupling
 - We can minimize
 \[f(x) + (x-a)^2 \]
 \[g(x) + (x-a)^2 \]

- **Reference**
What you need to know

- A simple SCD for LASSO (Shooting)
 - Your HW, a more efficient implementation! 😊
 - Analysis of SCD

- Parallel SCD (Shotgun)

- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD)
 - Parallel independent solutions then averaging

- ADMM
 - General idea
 - Application to LASSO