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Problem 4.1
[75 points]
Comparing ALS and Gibbs Sampling for Matrix Factorization
In this problem, you will look at a portion of the Netflix movie rating dataset, which
has ratings that users have given to movies. In this example, we have a matrix
X ∈ <n×m for n = 50 users and m = 20 movies. Although many of the entries of the
full dataset are zero, since users do not rate every movie, this particular subset has
ratings for every user/movie pair. We have held out 25% of the existing ratings as
a validation set as well 25% as a test set in order to assess performance of different
methods for matrix factorization.The remaining 50% of the data will be used as the
training set. These files can be found in the zip file “submatrix.zip” in matrix market
format. The goal is to find L ∈ <n×k and R ∈ <m×k that best predict the true ratings
ru,v in the test set. To prevent overfitting on the training set, we will regularize L
and R via the L2 norm. Our objective function, then, is to find L and R such that

f(L,R) =
1

2

∑
u,v:ru,v 6=0

(ru,v − Lu ·Rv)
2 +

λu
2
‖L‖22 +

λv
2
‖R‖22 (1)

is minimized on the training set. We can then use the validation set to help choose
λu and λv before predicting the test set (which would normally be unknown).

(a) As was discussed in class, one algorithm that solves this optimization problem
is Alternating Least Squares (ALS). Recall that this algorithm iteratively solves
the minimization over L and R, holding the other fixed. Conveniently, this can
be done independently for each row of L and R. So our algorithm is to iterate
over the following 2 steps until convergence.

1. Holding R fixed, for each row Lu of L, find

arg min
Lu

g(Lu;X,R). (2)

2. Holding L fixed, for each row Rv of R, find

arg min
Rv

h(Rv;X,L). (3)
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i. [5 points] Write down g(Lu;X,R), the objective function to be minimized
for a single user in step 1 of the algorithm above.

ii. [15 points] Use ALS to find the L and R that minimize the objective. Use
k = 5 as the latent dimensionality, and λu = λv = λ for λ = 0, .1, 1, 10, 100.
Initialize L and R to all 1’s. Run ALS for 50 iterations for each value of
λ.
(Running time: less than a minute)

∗ Plot f(L,R) vs iteration for λ = 1.

∗ Plot the RMSE of the training set and the validation set against λ (on
the same plot).

∗ Based on your results from the previous part, choose the λ that you
will use on the test set and report the RMSE on the test set using that
value of λ.

The equation for calculating RMSE is

RMSE(L,R,X) =

 1

{#Xu,v 6= 0}
∑

u,v:Xu,v 6=0

(Xu,v − Lu ·Rv)
2

1/2

. (4)

iii. [5 points] What value of λ performs best on the training set? Does this
match your expectations? Why or why not?

iv. [5 points] For the sake of comparison to part (b), report the validation
and test RMSE for λ = 1.

(b) A Bayesian approach to this problem uses Gibbs sampling to approximate the
full posterior of the parameters of interest rather than getting a single estimate.
In this setting, we model the L and R matrices as (independently for each user
and movie):

Lu ∼ N(µL,ΣL), u = 1, . . . , n, (5)

Rv ∼ N(µR,ΣR), v = 1, . . . ,m. (6)

Then, conditional on L and R, we model our observations

ru,v ∼ N(Lu ·Rv, σ
2
r). (7)

i. [5 points] Write down the full conditional distributions for Lu and Rv.

ii. [5 points] With k = 5 as in part (a) and assuming ΣL = ΣR = σ2Ik×k,
with σ2 = 0.25, specify the values of µL, µR, σ

2
r for the model corresponding

to the objective function (1) you minimized in part (a) with the value
λ = 1.
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iii. [15 points] Using the parameter values you came up with in (ii), run
the Gibbs sampler for 300 iterations and plot the log probability on the
training data vs iterations. Using the single sample corresponding to the
maximum log probability, imax, predict the validation data and report
RMSE(L∗(imax), R∗(imax), Xvalidation). Also predict the test data and report
RMSE(L∗(imax), R∗(imax)Xtest).
Initialize your L and R matrices from a sample directly from the prior.
(Running time: may be up to 5 minutes).

iv. [5 points] In theory, what is the relationship between L∗ and R∗ found
in part (a) with λ = 1 and L∗(imax), R∗(imax) found in part b(iii), where
in part (a) L∗, R∗ is the ALS solution and in part b(iii) L∗(imax), R∗(imax)

correspond to the sample maximizing log-probability?

v. [5 points] Using the Gibbs samples from (iii), throw out the first 150
samples as burn in and compute an average RMSE with the remaining
150 samples on the validation data.

RMSEave =
1

150

300∑
i=151

RMSE(L∗(i), R∗(i), Xvalidation) (8)

vi. [5 points] Note that part (iii) provides a way of determining a point
estimate for the completed matrix by using the L and R that maximize
the log probability. We might also consider using the point estimate given
by the posterior expectation of the completed matrix LRT :

E[LRT |φ,Xtrain] =

∫
L,R

LRTP (L,R|φ,Xtrain)dLdR (9)

In terms of L∗(i) and R∗(i), write an expression for the Monte Carlo estimate
of the posterior expectation of LRT , using only the samples after burn-in.

vii. [5 points] Using the ratings estimates given by the Monte Carlo estimate
from part (vi), report the RMSE on the validation data and the test data.
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Problem 4.2
[25 points]
Collaborative Filtering and Clustering on the Netflix Dataset

*Matrix notation: We will use subscript(superscript) to denote the column(row) of a
matrix; e.g. for any matrix X, Xj is the jth column, X i is the ith row, and Xi,j is
the entry (i, j).

This problem contains 2 parts. In the first part, you will learn to use GraphChi
(graphchi.org) to perform matrix factorization on the Netflix Dataset. In the sec-
ond part, you will use the latent factor matrix from part 1 to perform kmeans and
spectral clustering.

The famous Netflix dataset contains 100M ratings from n = 480K users to m = 17770
movies. Let X be the n ×m rating matrix, and k be the number of latent factors,
the goal is to find U ∈ Rn×k and V ∈ Rm×k such that

f(U, V ) =
1

2

∑
i,j:Xi,j 6=0

(
Xi,j − U iTV j

)2
+ λ‖U‖2F + λ‖V ‖2F (10)

is minimized.

One algorithm that solves the above optimization problem is the Alternating Least
Squares method discussed in class. This algorithm is already implemented in GraphChi.

• Download “netflix mm.gz” from the course website.

• Run “gunzip netflix mm.gz” and you will get the rating matrix in sparse Matrix
Market format.

• Follow the instructions at
bickson.blogspot.co.il/2013/02/setting-up-java-graphchi-development.html

to setup graphchi-java.

The latent dimension k trades off computation with accuracy.

(a) [15 points] Run ALSMatrixFactorization with nshards = 10 and k = 2, 4, 6, 8, 10.

– Plot the training RMSE against k.

– Plot the engine runtime against k.

The resulting latent factor matrices U and V are stored in “netflix mm U.mm” and
“netflix mm V.mm” in sparse Matrix Market format.
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In the next part, you will use the latent factor matrix V as movie features, and cluster
the movies using Kmeans. If you use Matlab, you do not need to implement anything
– it is all handled by the starter code. For simplicity and better interpretability, we
only cluster the first 3000 movies. (The first 3000 rows in matrix “netflix mm V”).

(b) [10 points] Run “kmeans run.m” and report the 20 closest movies for each
cluster. (No coding required, if using the starter code.)
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