Nearest Neighbor

Machine Learning - CSE546
Kevin Jamieson
University of Washington
October 26, 2017

Some data, Bayes Classifier

Training data:

True label: +1
(True label: - 1

Optimal "Bayes" classifier:
$\mathbb{P}(Y=1 \mid X=x)=\frac{1}{2}$

Predicted label: +1
\square Predicted label: -1

Figures stolen from Hastie et al

Linear Decision Boundary

Training data:

True label: +1
(True label: -1

Learned:

Linear Decision boundary

$$
x^{T} w+b=0
$$

\square Predicted label: +1
\square Predicted label: -1

Figures stolen from Hastie et al

15 Nearest Neighbor Boundary

Training data:
(True label: +1
(True label: -1

Learned:

15 nearest neighbor decision boundary (majority vote)
\square Predicted label: +1
\square Predicted label: -1

1 Nearest Neighbor Boundary

Training data:

True label: +1
(True label: -1

Learned:
1 nearest neighbor decision boundary (majority vote)
\square Predicted label: +1
\square Predicted label: -1

k-Nearest Neighbor Error

k - Number of Nearest Neighbors

Bias-Variance tradeoff

As k->infinity?
Bias:

Variance: 0

As $\mathrm{k}->1$?
Bias: Sual/
Variance: 1no

Notable distance metrics (and their level sets)

Mahalanobis
(here, Σ on the previous slide is not necessarily diagonal, but is symmetric

1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$, assume the x_{i} 's become dense in \mathbb{R}^{d}

Note: any $x_{a} \in \mathbb{R}^{d}$ has the same label distribution as x_{b} with $b=1 N N(a)$

$$
\left(x_{i}, y_{i}\right) \stackrel{i}{i d}_{i d} P_{x y} \quad P(y=y \mid X=x)
$$

[Cover, Hart, 1967]

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$, assume the x_{i} 's become dense in \mathbb{R}^{d}
Note: any $x_{a} \in \mathbb{R}^{d}$ has the same label distribution as x_{b} with $b=1 N N(a)$ If $\underline{p_{\ell}}=\mathbb{P}\left(Y_{a}=\ell\right)=\mathbb{P}\left(Y_{b}=\ell\right)$ and $\ell^{*}=\arg \max _{\ell=1, \ldots, k} p_{\ell}$ then

Bagkes error $=1-p_{\ell^{*}}$

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$, assume the x_{i} 's become dense in \mathbb{R}^{d}
Note: any $x_{a} \in \mathbb{R}^{d}$ has the same label distribution as x_{b} with $b=1 N N(a)$ If $\underline{p_{\ell}}=\mathbb{P}\left(Y_{a}=\ell\right)=\mathbb{P}\left(Y_{b}=\ell\right)$ and $\ell^{*}=\arg \max _{\ell=1, \ldots, k} p_{\ell}$ then

Batjes error $=1-p_{\ell^{*}}$
1-nearest neighbor error $=\mathbb{P}\left(Y_{a} \neq Y_{b}\right)=\sum_{\ell=1}^{k} \mathbb{P}\left(Y_{a}=\ell, Y_{b} \neq \ell\right)$

$$
\begin{aligned}
& =\sum_{l} \mathbb{P}\left(Y_{a}=l\right) P\left(Y_{b}+l\right) \\
& =\sum_{l} P_{l}\left(1-P_{l}\right) \stackrel{k=2}{=} 2 P_{l_{p}}\left(1-P_{l p}\right)
\end{aligned}
$$

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$, assume the x_{i} 's become dense in \mathbb{R}^{d}
Note: any $x_{a} \in \mathbb{R}^{d}$ has the same label distribution as x_{b} with $b=1 N N(a)$ If $p_{\ell}=\mathbb{P}\left(Y_{a}=\ell\right)=\mathbb{P}\left(Y_{b}=\ell\right)$ and $\ell^{*}=\arg \max _{\ell=1, \ldots, k} p_{\ell}$ then

Bates error $=1-p_{\ell^{*}}$
1-nearest neighbor error $=\mathbb{P}\left(Y_{a} \neq Y_{b}\right)=\sum_{\ell=1}^{k} \mathbb{P}\left(Y_{a}=\ell, Y_{b} \neq \ell\right)$

$$
=\sum_{\ell=1}^{k} p_{\ell}\left(1-p_{\ell}\right) \leq 2\left(1-p_{\ell^{*}}\right)-\frac{k}{k-1}\left(1-p_{\ell^{*}}\right)^{2}
$$

As $\mathrm{N}^{>}>$infinity, then 1-NN rule error is at most twice the Bayes error!
[Cover, Hart, 1967]

Curse of dimensionality Ex. 1

X is uniformly distributed over $[0,1]^{p}$. What is $\mathbb{P}\left(X \in[0, r]^{p}\right)$? r^{p}

Curse of dimensionality Ex. 2

$\left\{X_{i}\right\}_{i=1}^{n}$ are uniformly distributed over $[-.5, .5]^{p}$.

What is the median distance from a point at origin to its 1NN?

Nearest neighbor regression

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}

$$
\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i}
$$

Nearest neighbor regression

Why are far-away neighbors

 weighted same as close neighbors!Kernel smoothing: $K(x, y)$

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neiohbors of x_{0}

$$
\left.\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right.} \frac{1}{k} y_{i}\right) \quad \widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)}
$$

Nearest neighbor regression

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}

$$
\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i} \quad \widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)}
$$

Nearest neighbor regression

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}

$$
\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i}
$$

Why just average them?

$$
\widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, r_{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)}
$$

Nearest neighbor regression

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n}
$$

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}
$\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i}$

$\widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)}$

$$
w\left(x_{0}\right), b\left(x_{0}\right)=\arg \min _{w, b} \sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)\left(y_{i}-\left(b+w^{T} x_{i}\right)\right)^{2}
$$

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees. With not a lot of data, neighborhoods aren't "local" and methods suffer.

Kernels

Machine Learning - CSE546
 Kevin Jamieson
 University of Washington

October 26, 2017

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Hinge Loss: $\ell_{i}(w)=\max \left\{0,1-y_{i} x_{i}^{T} w\right\}$
Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

All in terms of inner products! Even nearest neighbor can use inner products!
$\|x-y\|_{2}^{2}=x^{\top} x-2 x^{\top} y+y^{\top} y$

What if the data is not linearly separable?

Feature space can get really large really quickly!

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d

$$
d=1: \phi(u)=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \underline{\langle\phi(u), \phi(v)\rangle}=u_{1} v_{1}+u_{2} v_{2}
$$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d

$$
\begin{aligned}
& d=1: \phi(u)=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2} \\
& d=2: \phi(u)=\left[\begin{array}{c}
u_{1}^{2} \\
u_{2}^{2} \\
u_{1} u_{2} \\
u_{2} u_{1}
\end{array}\right] \quad \begin{aligned}
\langle\phi(u), \phi(v)\rangle & =u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2} \\
& =(\langle u, \boldsymbol{v}\rangle)^{2}
\end{aligned}
\end{aligned}
$$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d
$d=1: \phi(u)=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2}$
$d=2: \phi(u)=\left[\begin{array}{c}u_{1}^{2} \\ u_{2}^{2} \\ u_{1} u_{2} \\ u_{2} u_{1}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2}$
General $d: \nabla(u)\left[\begin{array}{c}u_{u_{1}^{d}}^{u_{c}} \\ \vdots\end{array}\right]\langle\phi(u), \phi(v)\rangle=(\langle u, v\rangle)^{d}$
Dimension of $\phi(u)$ is roughly p^{d} if $u \in \mathbb{R}^{p}$

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

There exists an $\alpha \in \mathbb{R}^{n}: \widehat{w}=\sum_{i=1}^{n} \alpha_{i} x_{i}=X^{\top} \alpha{ }_{\text {Why? }}$
\hat{w} is the $\frac{\operatorname{span}}{\hat{n}}$ of $\left(x_{1}, \ldots, x_{n}\right)$ if $子 \alpha: \hat{w}=\sum_{\alpha=x}$
$\widehat{\omega}=\hat{\omega}_{\text {in }}+\hat{\omega}_{\text {out }}, \quad \hat{\omega}_{\text {out }}^{\top}\left(\sum x_{i}\right)=\sum x_{i}^{\top} \hat{\omega}_{\text {out }}=0$

$$
\underset{a}{\operatorname{argmin}}\left\|X X^{\top} \alpha-y\right\|_{2}^{2}+\lambda \alpha^{\top} X X^{\top} \alpha \quad \underline{K}=X X^{\top} \in \mathbb{R}^{n \times n}
$$

$=\|K \alpha-y\|_{2}^{2}+\lambda \alpha^{1} K_{\alpha} \stackrel{\nabla_{\alpha}}{\longmapsto} 2 K K \alpha-2 K y+21 k_{\alpha}=0$
$5\left[(K+\lambda I)_{\alpha}-y\right]=0 \quad \alpha=(1 K+\lambda I)^{\gamma} y$

Observation

$$
\begin{gathered}
\underset{\arg \min \| K}{\|} \begin{array}{l}
K=X X^{\top} \in \mathbb{R} N \\
K_{i, j}=\left\langle\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha\right. \\
\left.K_{i}, x_{j}\right\rangle
\end{array} \\
f(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right) \equiv \sum_{j=1}^{d} w_{j} \phi(x) \\
W=\sum_{i=1}^{n} \phi\left(x_{c}\right) \alpha_{i}
\end{gathered}
$$

Common kernels

- Polynomials of degree exactly d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian (squared exponential) kernel

$$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)
$$

Mercer's Theorem

- When do we have a valid Kernel $\mathrm{K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$?
- Definition 1: when it is an inner product

$$
\text { If } \exists \phi: \mathbb{R}^{d} \rightarrow \mathcal{C l} \quad K_{1}\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
$$

- Mercer's Theorem:
$K\left(x, x^{\prime}\right)$ is a valid kernel if and only if K is a positive semi-definite.
PSD in the following sense:

$$
\begin{aligned}
& \forall f \quad \int_{x y} \int_{\int^{\prime}} f(x) v(x, y) f(y) d x d y \geq 0 \\
& x \in \mathbb{R}^{d}, K \in \mathbb{R}^{R_{r d}} \text { is PSD if } x^{\top} K x \geq 0 \forall x
\end{aligned}
$$

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Note that this is like weighting "bumps" on each point like kernel smoothing but now we learn the weights

Radial Basis Functions

$$
f(x)=\alpha_{0}+\sum_{j} \alpha_{j} K\left(x, x_{j}\right)
$$

- Is there an inner product representation of $\mathrm{K}(\mathrm{x}, \mathrm{y})$?

Classification

$$
\widehat{w}=\sum_{i=1}^{n} \underset{n}{\max \left\{0,1-y_{i}\left(b+x_{i}^{T} w\right)\right\}+\lambda\|w\|_{2}^{2}, ~}
$$

$$
\min _{\alpha, b} \sum_{i=1}^{n} \max \{0,1-y_{i}(b+\sum_{j=1}^{n} \alpha_{j} \underbrace{\left\langle x_{i}, x_{j}\right\rangle}_{K_{i, j}})\}+\lambda \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} \frac{\left\langle x_{i}, x_{j}\right\rangle}{K_{i, j}}
$$

RBF kernel Secretly random
 features
 $2 \cos (\alpha) \cos (\beta)=\cos (\alpha+\beta)+\cos (\alpha-\beta)$

$b \sim \operatorname{uniform}(0, \pi) \quad w \sim \mathcal{N}(0,2 \gamma)$
$\phi(x)=\sqrt{2} \cos \left(w^{T} x+b\right)$
$\mathbb{E}_{w, b}\left[\phi(x)^{T} \phi(y)\right]=$

RBF kernel Secretly random features
 $2 \cos (\alpha) \cos (\beta)=\cos (\alpha+\beta)+\cos (\alpha-\beta)$

$$
b \sim \operatorname{uniform}(0, \pi) \quad w \sim \mathcal{N}(0,2 \gamma)
$$

$$
\phi(x)=\sqrt{2} \cos \left(w^{T} x+b\right)
$$

$$
\mathbb{E}_{w, b}\left[\phi(x)^{T} \phi(y)\right]=e^{-\gamma\|x-y\|_{2}^{2}}
$$

[Rahimi, Recht 2007]

Hint: use Euler's formula $e^{j z}=\cos (z)+j \sin (z)$

Wait, infinite dimensions?

- Isn't everything separable there? How are we not overfitting?
- Regularization! Fat shattering (R/margin)^2
- What about sparsity?

String Kernels

Example from Efron and Hastie, 2016
Amino acid sequences of different lengths:

x1
 IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
 X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) $20^{3}=8,000$

$$
h_{\mathrm{LLE}}^{3}\left(x_{1}\right)=1 \text { and } h_{\mathrm{LLE}}^{3}\left(x_{2}\right)=2 .
$$

Least squares, tradeoffs

