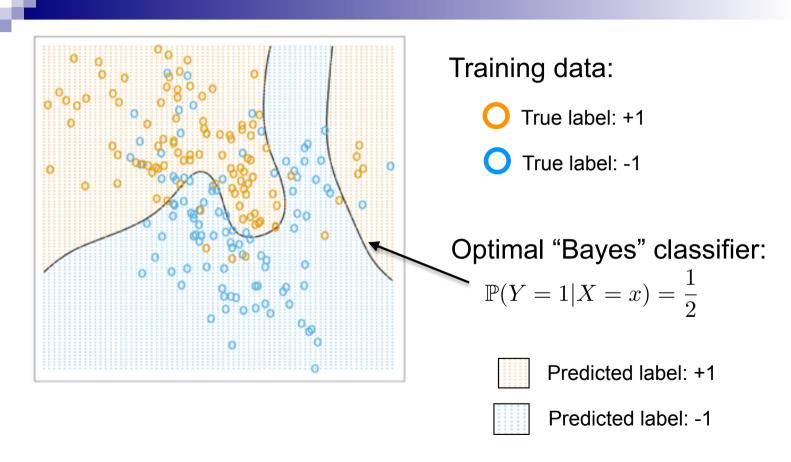
Nearest Neighbor

Machine Learning – CSE546 Kevin Jamieson University of Washington

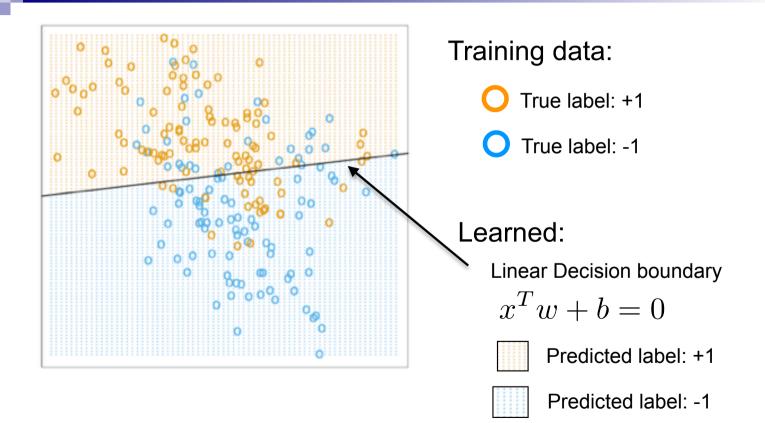
October 26, 2017

©2017 Kevin Jamieson

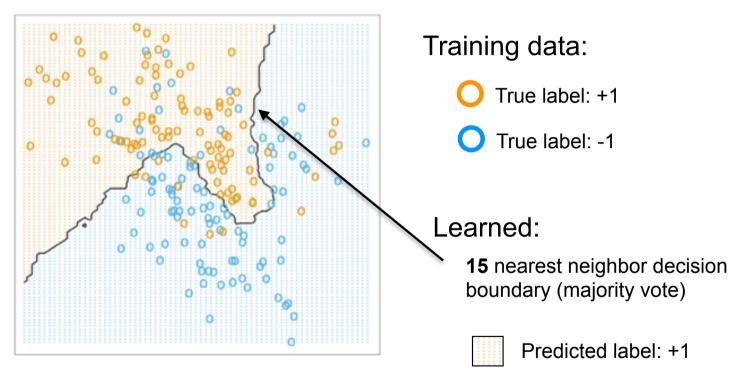
Some data, Bayes Classifier



Linear Decision Boundary

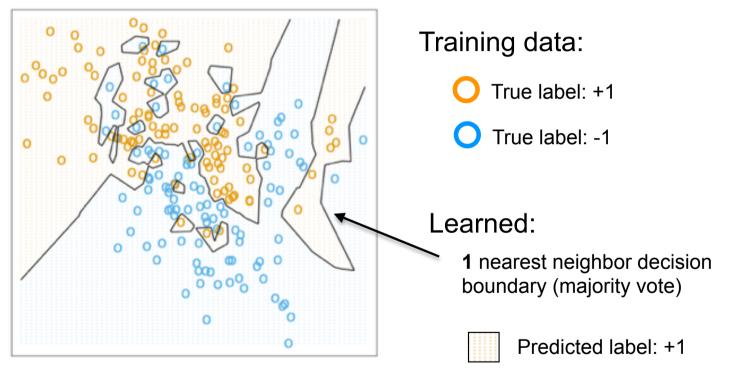


15 Nearest Neighbor Boundary



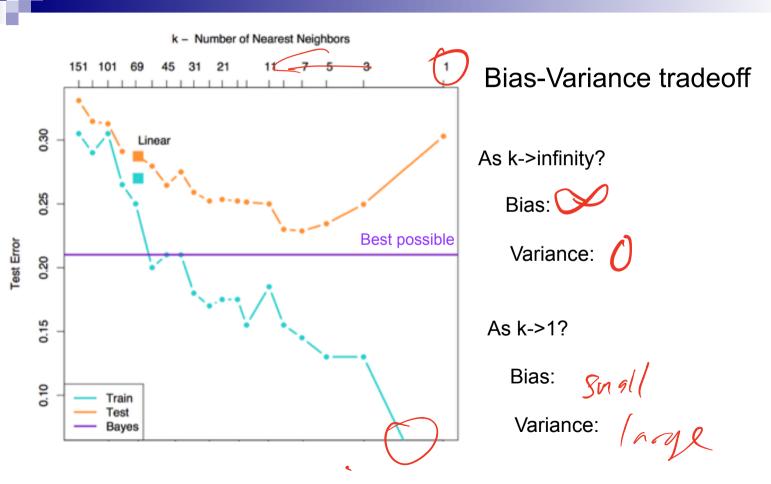
Predicted label: -1

1 Nearest Neighbor Boundary

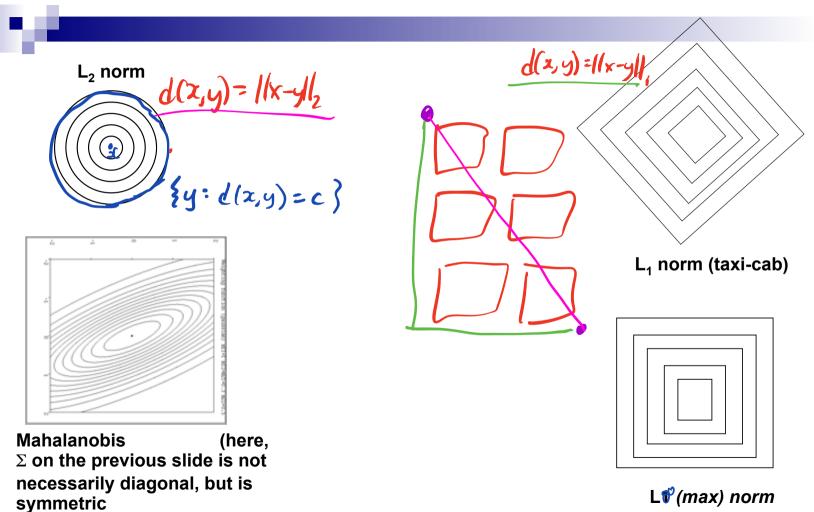


Predicted label: -1

k-Nearest Neighbor Error

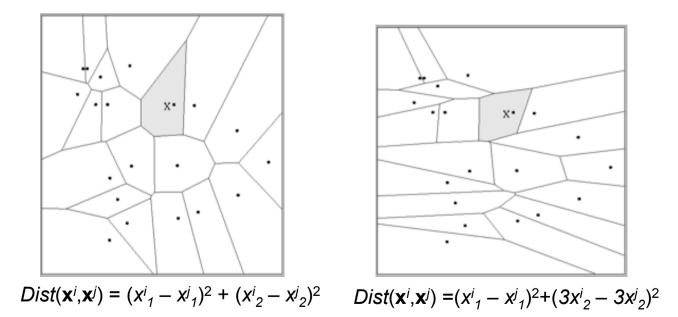


Notable distance metrics (and their level sets)



1 nearest neighbor

One can draw the nearest-neighbor regions in input space.



The relative scalings in the distance metric affect region shapes

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, y_i \in \{1, \dots, k\}$$

As $n \to \infty$, assume the x_i 's become *dense* in \mathbb{R}^d

Note: any $x_a \in \mathbb{R}^d$ has the same label distribution as x_b with $b = \underline{1NN(a)}$ $(\chi_i, y_i) \stackrel{iid}{\smile} \stackrel{P}{\nearrow} \qquad P(\dot{\gamma} : y_i | \chi : \chi)$

$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d, y_i \in \{1, \dots, k\}$
As $n \to \infty$, assume the x_i 's become *dense* in \mathbb{R}^d

Note: any $x_a \in \mathbb{R}^d$ has the same label distribution as x_b with b = 1NN(a)If $\underline{p_\ell} = \mathbb{P}(Y_a = \ell) = \mathbb{P}(Y_b = \ell)$ and $\ell^* = \arg \max_{\ell=1,...,k} p_\ell$ then Bayes error $= 1 - p_{\ell^*}$

$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d, y_i \in \{1, \dots, k\}$
As $n \to \infty$, assume the x_i 's become *dense* in \mathbb{R}^d

Note: any $x_a \in \mathbb{R}^d$ has the same label distribution as x_b with b = 1NN(a)If $\underline{p_\ell} = \mathbb{P}(Y_a = \ell) = \mathbb{P}(Y_b = \ell)$ and $\ell^* = \arg \max_{\ell=1,...,k} p_\ell$ then Battes error $= 1 - p_{\ell^*}$ 1-nearest neighbor error $= \mathbb{P}(Y_a \neq Y_b) = \sum_{\ell=1}^k \mathbb{P}(Y_a = \ell, Y_b \neq \ell)$ $= \sum_{\ell=1}^{7} \mathbb{P}(Y_a = \ell) \mathbb{P}(Y_b \neq \ell)$

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, y_i \in \{1, \dots, k\}$$

As $n \to \infty$, assume the x_i 's become *dense* in \mathbb{R}^d

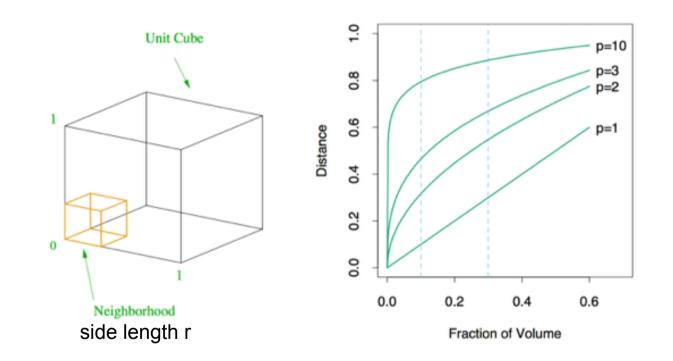
Note: any $x_a \in \mathbb{R}^d$ has the same label distribution as x_b with b = 1NN(a)If $p_{\ell} = \mathbb{P}(Y_a = \ell) = \mathbb{P}(Y_b = \ell)$ and $\ell^* = \arg \max_{\ell=1,...,k} p_{\ell}$ then Bates error $= 1 - p_{\ell^*}$ 1-nearest neighbor error $= \mathbb{P}(Y_a \neq Y_b) = \sum_{k=1}^k \mathbb{P}(Y_a = \ell, Y_b \neq \ell)$

$$=\sum_{\ell=1}^{k} p_{\ell}(1-p_{\ell}) \leq 2(1-p_{\ell^*}) - \frac{k}{k-1}(1-p_{\ell^*})^2$$

As >infinity, then 1-NN rule error is at most twice the Bayes error!

[Cover, Hart, 1967]

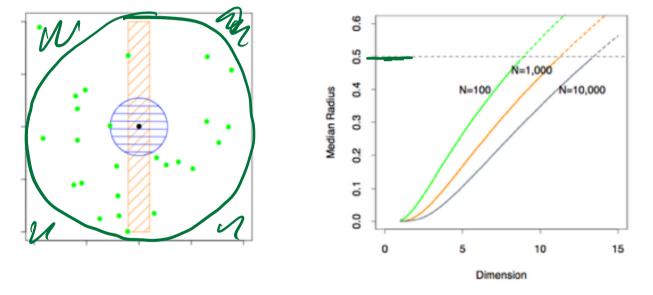
Curse of dimensionality Ex. 1



X is uniformly distributed over $[0,1]^p$. What is $\mathbb{P}(X \in [0,r]^p)$?

Curse of dimensionality Ex. 2

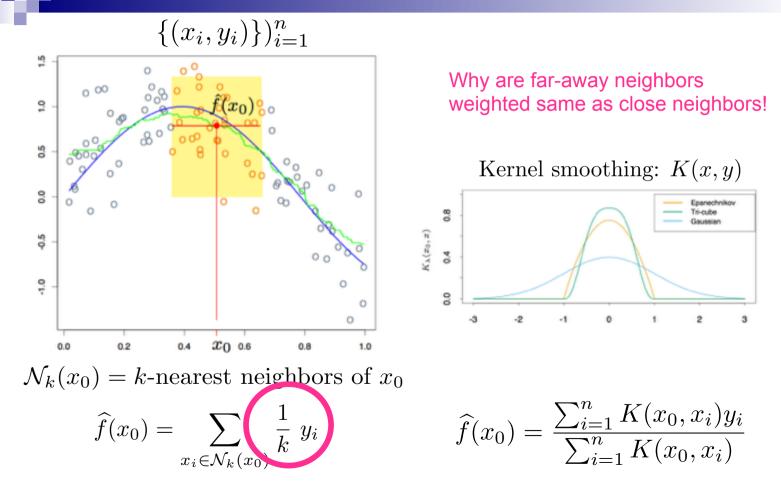
 ${X_i}_{i=1}^n$ are uniformly distributed over $[-.5, .5]^p$.

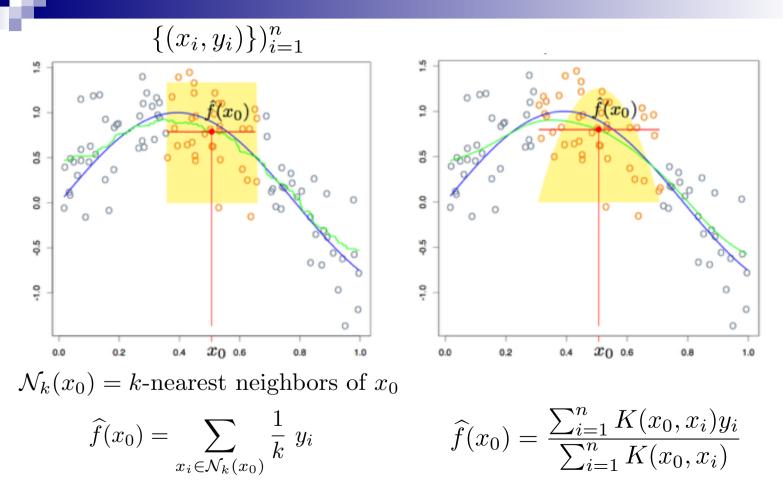


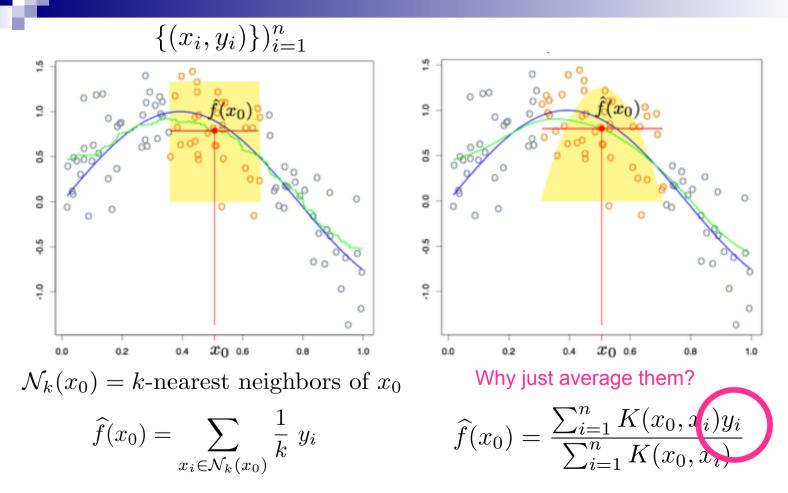
What is the median distance from a point at origin to its 1NN?

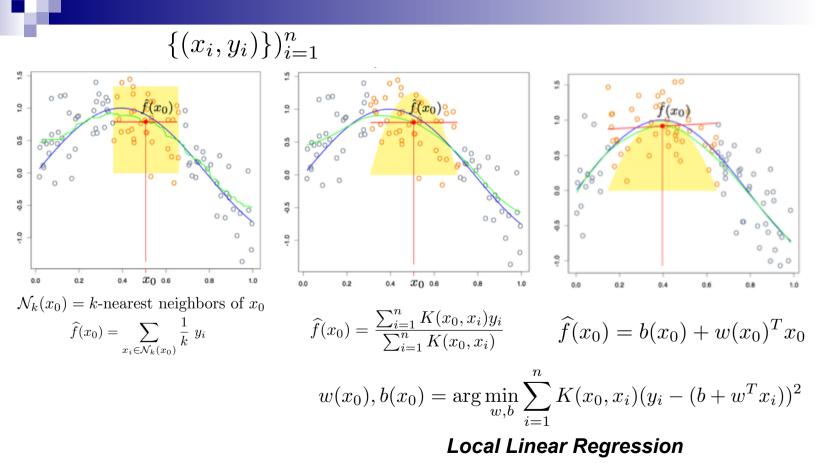
$$\{(x_i, y_i)\}\}_{i=1}^n$$

$$\widehat{f}(x_0) = \sum_{x_i \in \mathcal{N}_k(x_0)} \frac{1}{k} y_i$$









Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)

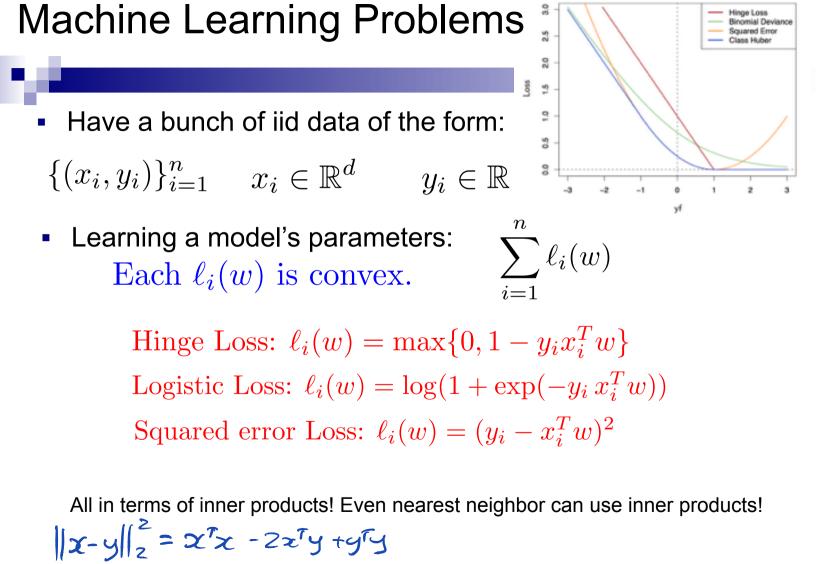
Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees. With not a lot of data, neighborhoods aren't "local" and methods suffer.

Machine Learning – CSE546 Kevin Jamieson University of Washington

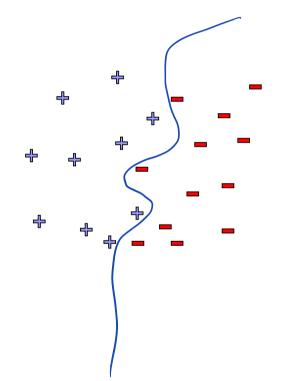
October 26, 2017

©2017 Kevin Jamieson



©Kevin Jamieson 2017

What if the data is not linearly separable?



Use features of features of features....

 $\phi(x): \mathbb{R}^d \to \mathbb{R}^p$

Feature space can get really large really quickly!

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = polynomials of degree exactly d$

$$d = 1: \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \underbrace{\langle \phi(u), \phi(v) \rangle}_{=} = u_1 v_1 + u_2 v_2$$

Dot-product of polynomials

$$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$$

$$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

$$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$

$$= (\langle u, v \rangle)^2$$

Dot-product of polynomials

$$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$$

$$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

$$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$
General $d : \bigoplus(u) \bigoplus_{i=1}^{u_i} \bigoplus_{i=$

©2017 Kevin Jamieson

Observation

 $= \operatorname{agnin}_{W} \| X_{W} - Y \|_{2}^{2} + \| w \|_{2}^{2}$ $\widehat{w} = \arg\min_{w} \sum (y_i - x_i^T w)^2 + \lambda ||w||_{\mathcal{P}}^2$ There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i = \bigvee_{i=1}^n w_{hy?}$ \hat{W} is the span of $(\mathbf{x}_{i_1,\ldots,i_n}, \mathbf{x}_n)$ if $\mathbf{z}_{\mathbf{x}}: \hat{W} = \mathbf{z}_{\mathbf{x}}: \hat{W} = \mathbf{z}_{\mathbf{x}}: \hat{W}$ $\hat{W} = \hat{W}_{in} + \hat{W}_{out}, \quad \hat{W}_{out}(\mathbf{z}_{\mathbf{x}}) = \mathbf{z}_{\mathbf{x}}: \hat{W}_{out} = 0$ $\frac{\alpha_{rymin}}{\alpha} \|XX^{T}\alpha - Y\|_{2}^{2} + \lambda \alpha^{T}XX^{T}\alpha \qquad K = XX^{T} GR^{nxn}$ = ||Ka-y||2+ harka 1 2K Ka-2Ky+2/Ka=0 $K(K + \lambda I) = 0 \qquad \alpha = (K + \lambda I) \gamma$ 30

Observation

 $\frac{\mathbf{k} > \mathbf{k} \mathbf{k}^{T} \boldsymbol{\epsilon} \boldsymbol{k}^{T} \boldsymbol{\epsilon} \boldsymbol{k}^{T}}{\arg \min_{\alpha} ||\mathbf{K}\alpha - \mathbf{y}||_{2}^{2} + \lambda \alpha^{T} \mathbf{K}\alpha}$ $K_{i,i} = \langle x_i, x_i \rangle$

 $K_{i,j} = \left\langle \phi(x_i), \phi(x_j) \right\rangle = K(x_i, x_j)$ $f(x) = \sum_{i=1}^{N} \alpha_i K(x_i, x) \equiv \sum_{i=1}^{d} \omega_i \theta(x)$ $W = \sum_{i=1}^{n} \phi(x_i) d_i$

I=X'a

Common kernels

Polynomials of degree exactly d

$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

• Gaussian (squared exponential) kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

Sigmoid

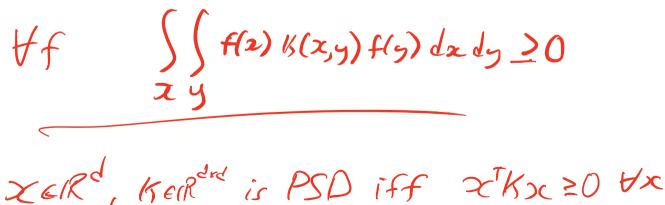
$$K(\mathbf{u},\mathbf{v}) = tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Mercer's Theorem

- When do we have a valid Kernel K(x,x')?
- Definition 1: when it is an inner product

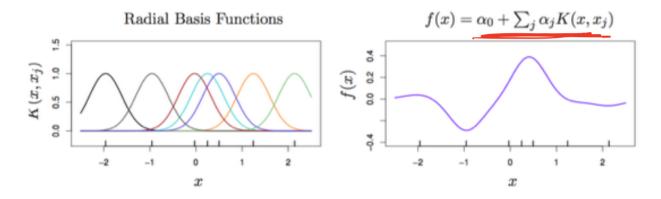
If $\exists p: \mathbb{R}^d \rightarrow \mathcal{H}$ $K(z, z') = \langle p(z), p(z') \rangle$

- Mercer's Theorem:
 - K(x,x') is a valid kernel if and only if K is a positive semi-definite.
 - PSD in the following sense:



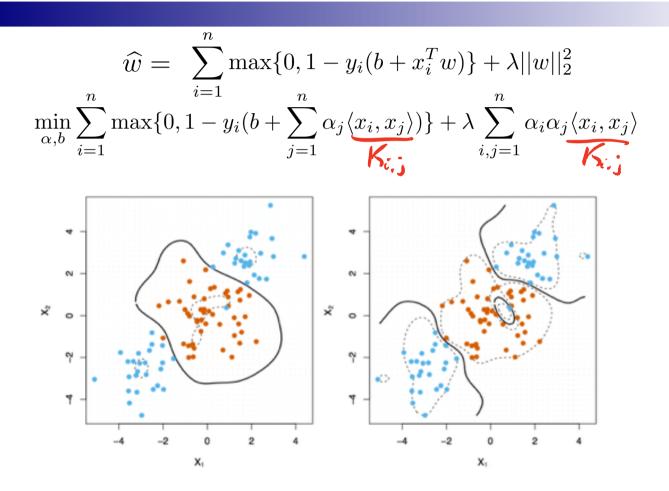
RBF Kernel
$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

 Note that this is like weighting "bumps" on each point like kernel smoothing but now we learn the weights



Is there an inner product representation of K(x,y)?

Classification



RBF kernel Secretly randomfeatures $2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta)$

$$b \sim \operatorname{uniform}(0, \pi) \qquad \qquad w \sim \mathcal{N}(0, 2\gamma)$$

$$\phi(x) = \sqrt{2}\cos(w^T x + b)$$

 $\mathbb{E}_{w,b}[\phi(x)^T\phi(y)] =$

RBF kernel Secretly randomfeatures $2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta)$

$$b \sim \operatorname{uniform}(0, \pi) \qquad w \sim \mathcal{N}(0, 2\gamma)$$

$$\phi(x) = \sqrt{2} \cos(w^T x + b)$$

$$\mathbb{E}_{w,b}[\phi(x)^T \phi(y)] = e^{-\gamma ||x - y||_2^2} \qquad \text{[Rahimi, Recht 2007]}$$

Hint: use Euler's formula $e^{jz} = \cos(z) + j\sin(z)$

Wait, infinite dimensions?

Isn't everything separable there? How are we not overfitting?

Regularization! Fat shattering (R/margin)²

• What about sparsity?

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

x1 IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA

x2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) $20^3 = 8,000$

$$h_{\text{LQE}}^3(x_1) = 1 \text{ and } h_{\text{LQE}}^3(x_2) = 2.$$

Least squares, tradeoffs