
CSE 546: Machine Learning Lecture 9

Online Learning & Margins

Instructor: Sham Kakade

1 Introduction

There are two common models of study:

Online Learning No assumptions about data generating process. Worst case analysis. Fundamental connections to
Game Theory.

Statistical Learning Assume data consists of independently and identically distributed examples drawn according to
some fixed but unknown distribution.

Our examples will come from some space X × Y . Given a data set

{(xt, yt)}Tt=1 ∈ (X × Y)T ,

our goal is to predict yT+1 for a new point xT+1. A hypothesis is simply a function h : X → Y . Sometimes, a
hypothesis will map to a set D (for decision space) larger than Y . Depending on the nature of the set Y , we get special
cases of the general prediction problem. Here, we examine the case of binary classification where Y = {−1,+1}.

A set of hypotheses is often called a hypotheses class.

In the online learning model, learning proceeds in rounds, as we see examples one by one. Suppose Y = {−1,+1}. At
the beginning of round t, the learning algorithm A has the hypothesis ht. In round t, we see xt and predict ht(xt). At
the end of the round, yt is revealed and A makes a mistake if ht(xt) 6= yt. The algorithm then updates its hypothesis
to ht+1 and this continues till time T .

Suppose the labels were actually produced by some function f in a given hypothesis class C. Then it is natural to
bound the total number of mistakes the learner commits, no matter how long the sequence. To this end, define

mistake(A, C) := max
f∈C,T,x1:T

T∑
t=1

1 [ht(xt) 6= f(xt)] .

2 Linear Classifiers and Margins

Let us now look at a concrete example of a hypothesis class. Suppose X = Rd and we have a vector w ∈ Rd. We
define the hypothesis,

hw(x) = sgn(w · x) ,
where sgn(z) = 1 if z is positive and −1 otherwise. With some abuse of terminology, we will often speak of
“the hypothesis w” when we actually mean “the hypothesis hw”. The class of linear classifiers in the (uncountable)
hypothesis class

Clin :=
{
hw
∣∣w ∈ Rd

}
.
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Note that w and αw yield the same linear classifier for any scalar α > 0.

Suppose we have a data set that is linearly separable. That is, there is a w∗ such that,

∀t ∈ [T ], yt = sgn(w∗ · xt) . (1)

Separability means that yt(w∗ · xt) > 0 for all t. The minimum value of this quantity over the data set is referred to as
the margin. Let us make the assumption that the margin is lower bounded by 1.

Assumption M. (Margin of 1) Without loss of generality suppose ‖xt‖ ≤ 1. Suppose there exists a w∗ ∈ Rd for
which (1) holds. Further assume that

min
t∈[T ]

yt(w∗ · xt) ≥ 1 , (2)

Note the choice of 1 is arbitrary.

Note that the above implies that:

min
t∈[T ]

yt(
w∗
‖w∗‖

· xt) ≥
1

‖w∗‖
.

In other words, the width of the strip separating the positives from the negatives is of size 2
‖w∗‖ . Sometimes the margin

is define this way (where we assume that instead ‖w∗‖ = 1 and that the margin is some positive value rather than 1).

2.1 The Perceptron Algorithm

Algorithm 1 PERCEPTRON

w1 ← 0
for t = 1 to T do

Receive xt ∈ Rd

Predict sgn(wt · xt)
Receive yt ∈ {−1,+1}
if sgn(wt · xt) 6= yt then
wt+1 ← wt + ytxt

else
wt+1 ← wt

end if
end for

The following theorem gives a dimension independent bound on the number of mistakes the PERCEPTRON algorithm
makes.

Theorem 2.1. Suppose Assumption M holds. Let

MT :=

T∑
t=1

1 [sgn(wt · xt) 6= yt]

denote the number of mistakes the PERCEPTRON algorithm makes. Then we have,

MT ≤ ‖w∗‖2 .

Second, if we had instead assumed that ‖xt‖ ≤ X+, then the above would be:

MT ≤ ·X2
+‖w∗‖2 .
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Proof. Define mt = 1 if a mistake occurs at time t and 0 otherwise. We have that:

wt+1 = wt +mtytxt

Now observe that:

‖wt+1 − w∗‖2 = ‖wt +mtytxt − w∗‖2

= ‖wt − w∗‖2 + 2mtytxt(wt − w∗) +m2
ty

2
t ‖xt‖2

= ‖wt − w∗‖2 + 2mtytxt(wt − w∗) +mt‖xt‖2

≤ ‖wt − w∗‖2 + 2mtytxt(wt − w∗) +mt

≤ ‖wt − w∗‖2 − 2mt +mt

≤ ‖wt − w∗‖2 −mt

where the second to last step holds since we have that:

mtytxt(wt − w∗) ≤ mtytxtwt −mt < −mt

using the margin assumption and that ytxtwt < 0 when there is a mistake.

Hence, we have that:
mt ≤ ‖wt − w∗‖2 − ‖wt+1 − w∗‖2

This implies:

MT =

T∑
t=1

mt ≤ ‖w1 − w∗‖2 − ‖wT+1 − w∗‖2 ≤ ‖w∗‖2

which completes the proof.

3 SVMs

The SVM loss function can be viewed as a relaxation to the classification loss. The hinge loss on a pair (x, y) is
defined as:

`((x, y), w) = max{0, 1− yw>x}

In other words, we penalize with a linear loss when yw>x is 1 or less. Note that we could actually penalize when we
have a correct prediction (if 0 ≤ yw>x ≤ 1 then our prediction is correct and we are still penalized). In this latter
case, we call this a ’margin’ mistake.

Note that the gradient of this loss is:

∇`((x, y), w) = −yx if yw>x < 1

and the gradient is 0 otherwise.

The SVM seeks to minimize the following objective:

1

n

n∑
i=1

max{0, 1− yiw>xi}+ λ‖w‖2

As usual, the algorithm can be kernelized.
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