

Announcements: HW4 posted Poster Session Thurs, Dec 8 Today: Review: EM Neural nets and deep learning

Poster Session

- Thursday Dec 8, 9-11:30am
 - □ Please arrive 20 mins early to set up
- Everyone is expected to attend
- Prepare a poster
 - □ We provide poster board and pins
 - □ Both one large poster (recommended) and several pinned pages are OK.
- Capture
 - □ Problem you are solving
 - Data you used
 - ML methodology
 - Results

Prepare a 1-minute speech about your project

- Two instructors will visit your poster separately
- Project Grading: scope, depth, data

Logistic regression

■ P(Y|X) represented by:

$$P(Y = 1 \mid x, W) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$

$$= g(w_0 + \sum_i w_i x_i)$$

$$= g(w_0 + \sum_i w_i x_i)$$

■ Learning rule – MLE:

$$\frac{\partial \ell(W)}{\partial w_i} = \sum_j x_i^j [y^j - P(Y^j = 1 \mid x^j, W)]$$
$$= \sum_j x_i^j [y^j - g(w_0 + \sum_i w_i x_i^j)]$$

$$= \sum_{j} x_{i}^{j} [y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})]$$

$$w_{i} \leftarrow w_{i} + \eta \sum_{j} x_{i}^{j} \delta^{j}$$

$$\delta^{j} = y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})$$

$$\in Sham Kakade}$$

Percepton, linear classification, Boolean functions

- ٧
- Can learn x₁ AND x₂
- Can learn x₁ OR x₂
- Can learn any conjunction or disjunction

@Sham Kakade

Percepton, linear classification, Boolean functions

- Can learn majority
- Can perceptrons do everything?

©Sham Kakade

Going beyond linear classification

Solving the XOR problem

Hidden layer

- $out(\mathbf{x}) = g(w_0 + \sum_i w_i x_i)$ ■ Perceptron:

■ 1-hidden layer:

$$out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

Forward propagation for 1-hidden layer - Prediction

©Sham Kakade

15

Gradient descent for 1-hidden layer – Back-propagation: Computing $\frac{\partial \ell(W)}{\partial w_k}$

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$

Dropped w_0 to make derivation simpler

$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'} g(\sum_{i'} w_{i'}^{k'} x_{i'})\right)$$

$$\frac{\partial \ell(W)}{\partial w_k} = \sum_{j=1}^m -[y^j - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_k}$$

Sham Kakade

Gradient descent for 1-hidden layer – Back-propagation: Computing $\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$ Dropped w₀ to make

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$

Dropped w₀ to make derivation simpler

$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'} g(\sum_{i'} w_{i'}^{k'} x_{i'})\right)$$

$$\frac{\partial \ell(W)}{\partial w_i^k} = \sum_{j=1}^m -[y - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_i^k}$$

Multilayer neural networks

Forward propagation – prediction

- Recursive algorithm
- Start from input layer
- Output of node V_k with parents U₁,U₂,...:

$$V_k = g\left(\sum_i w_i^k U_i\right)$$

©Sham Kakade

19

Back-propagation - learning

- Just stochastic gradient descent!!!
- Recursive algorithm for computing gradient
- For each example
 - □ Perform forward propagation
 - ☐ Start from output layer
 - $\hfill\Box$ Compute gradient of node V_k with parents U_1,U_2,\ldots
 - \square Update weight w_i^k

©Sham Kakade

Many possible response/link functions Sigmoid Linear Exponential Gaussian Hinge Max ...

Contains slides from...

- LeCun & Ranzato
- Russ Salakhutdinov
- Honglak Lee

@Sham Kakade

23

Neural Networks in Computer Vision

- Neural nets have made an amazing come back
 Used to engineer high-level features of images
- Image features:

©Sham Kakade

Parameter sharing

- - Fundamental technique used throughout ML
 - Neural net without parameter sharing:
 - Sharing parameters:

Sham Kakade

Pooling/Subsampling

Convolutions act like detectors:

- But we don't expect true detections in every patch
- Pooling/subsampling nodes:

©Sham Kakade

Learning challenges for neural nets

- - Choosing architecture
 - Slow per iteration and convergence
 - Gradient "diffusion" across layers
 - Many local optima

@Sham Kakade

39

Random dropouts

Standard backprop:

 $w_i \leftarrow w_i + \eta \sum_i x_i^j \delta^j$

■ Random dropouts: randomly choose edges not to update:

Functions as a type of "regularization"... helps avoid "diffusion" of gradient

©Sham Kakade

Revival of neural networks

- Neural networks fell into disfavor in mid 90s -early 2000s
 - □ Many methods have now been rediscovered ☺
- Exciting new results using modifications to optimization techniques and GPUs
- Challenges still remain:
 - ☐ Architecture selection feels like a black art
 - □ Optimization can be very sensitive to parameters
 - □ Requires a significant amount of expertise to get good results

©Sham Kakade