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(One) bad case for k-means
" JEE
m Clusters may overlap

m Some clusters may be
“‘wider” than others




Density Estimation

m Estimate a density based on x7,...,x"
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Density as Mixture of Gaussians

m Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians Contour Plot of Joint Density

©Sham Kakade 2016 ©Sham Kakade 2016 4




Gaussians in d Dimensions
"

2 (x-n) T (x- )
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Density as Mixture of Gaussians
" JEE

m Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

p(a’|m, 1, ) =
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Density as Mixture of Gaussians

m Approximate with density with a mixture of Gaussians
Our actual observations

Mixture of 3 Gaussians

0.5

C. Bishop,..Rattern Recognition & Machine Learning
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Clustering our Observations

m Imagine we have an assignment of each x' to a Gaussian
Our actual observations

05 0.5

0 0.5 1 0 0.5 1
Complete data labeled
by true cluster assignments

C. Bishop,..Raltetn Recognition & Machine Learning
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Clustering our Observations
" J
m Imagine we have an assignment of each x/ to a Gaussian

m Introduce latent cluster
indicator variable z/

m Then we have

0.5 . R
p(a'|z", 7, pu,3) =

&

0 05 1
Complete data labeled
by true cluster assignments

C. Bishop,..Rattern Recognition & Machine Learning
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Clustering our Observations
" JEE

m We must infer the cluster assignments from the observations

m Posterior probabilities of
1 assignments to each cluster
*given* model parameters:

Tik :p(zz = k|$i7ﬂ-7:u) E) =
0.5

0 0.5 1
Soft assignments to clusters

C. Bishop,..Raltetn Recognition & Machine Learging
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Unsupervised Learning:
not as hard as it looks
JE
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Summary of GMM Concept
" JEE

m Estimate a density based on x7,...,.x"

K

p($i‘ﬂ7ua E) = Z WziN($i|Mzi7Ezi)

zi=1

05

R

0 0.5 1
Complete data labeled Surface Plot of Joint Density,
by true cluster assignments Marginalizing Cluster Assignments
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Summary of GMM Components
"

= Observations xie R?, i=1,2,...,N
= Hidden cluster labels z; € {1,2,..., K}, i=1,2,...,N
m Hidden mixture means pe €RY, k=1,2,... K
m Hidden mixture covariances Y, € RdXd’, k=1,2,....K
K
m Hidden mixture probabilities Tk Z =1
k=1

Gaussian mixture margin?(I and conditional likelihood :

p|m, 1, 3) = Y m pla'|2, 1, D)

zi=1

p(zt|2", 1, 2) = N (2| e, B0)
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Next... back to Density Estimation

" JJEE
What if we want to do density estimation with
multimodal or clumpy data?

= Auton’s Graphics. |
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But we don't see class labels!!!

. i
m MLE:
argmax [; P(Z,x)

m But we don’t know Z'
m Maximize marginal likelihood:
argmax [1; P(x)) = argmax [1; 21X P(z'=k,x1)
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Special case: spherical Gaussians
_ and hard assignments
S

P(Z =k,x')= ;exp[—l(xi -u )T > (xi -u )]P(zi =k)
’ Qr)"* g, I 2 KTk k

m If P(X|z=k) is spherical, with same o for all classes:

Lo
-]

m [f each xi belongs to one class C(i) (hard assignment), marginal likelihood:

P(x'17 =k)x exp[—

N K ) ) N 1 A 5
HEP(XZ’ZI =k)°CHeXp[_2T,2”XZ _“Cm" }

i=1 k=1 i=1

m Same as K-means!!!
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EM: “Reducing” Unsupervised
1 Learning to Supervised Learning

m |If we knew assignment of points toe ¢ .

classes & Supervised Learning!  * 0%

m Expectation-Maximization (EM)
Guess assignment of points to
classes

= In standard (“soft”) EM: each point
associated with prob. of being in each
class

Recompute model parameters
Iterate
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Generic Mixture Models
- _ MoG Example:

®
m Observations:

m Parameters: -

m Likelihood:

m Ex. 2"= country of origin, z'= height of i" person
k™ mixture component = distribution of heights in country k
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ML Estimate of Mixture Model Params

" JEE
m Log likelihood
L.(0) 2 logp({z'} | 0) = Zlogpr Far)

m \Want ML estimate
éML —

m Neither convex nor concave and local optima
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If “complete” data were observed...
" B

m Assume class labels 2 were observed in addition to xt
L,.(0)= Zlogp(mi,zi | 0)

m Compute ML estimates
Separates over clusters k!

m Example: mixture of Gaussians (MoG) 6 = {my, i, Ek}le
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Iterative Algorithm
" I

m Motivates a coordinate ascent-like algorithm:
Infer missing values z" given estimate of parameters 0 .
Optimize parameters to produce new ) given “filled in” data z"
Repeat
m Example: MoG (derivation soon...)
Infer “responsibilities”
ra =p(z =k |2, 007Y) =

Optimize parameters
max w.r.t. mp :

max w.r.t. pg, 2 :
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E.M. Convergence

"
2k
« EMis coordinate T
ascent on an ti
interesting potential

function e =

» Coord. ascent for
bounded pot. func. =2
convergence to a
local optimum
guaranteed

m This algorithm is REALLY USED. And in high dimensional state spaces, too.
E.G. Vector Quantization for Speech Data
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Gaussian Mixture Example: Start—

—_—
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After first iteration

After 2nd iteration
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After 3rd iteration
"

B
&.\ " @a\\

. j.?m \'\\

After 4th iteration
" I

/ /tﬁ ;\
‘\.\ .'p ‘. 0=0.268 \\
e e
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After 5th iteration

After 6th iteration
" D
Y 0%

‘ 0=0.315
S
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After 20th iteration

Some Bio Assay data
" I




GMM clustering of the assay data
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"
Resulting
Density
Estimator
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E.M.: The General Case
"

m E.M. widely used beyond mixtures of Gaussians
The recipe is the same...

m Expectation Step: Fill in missing data, given current values of
parameters, 8
If variable y is missing (could be many variables)
Compute, for each data point xi, for each value i of y:
= P(y=ilxi,00)

m Maximization step: Find maximum likelihood parameters for (weighted)
“completed data”:

For each data point xi, create k weighted data points

Set 8*") as the maximum likelihood parameter estimate for this weighted data

m Repeat
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Initialization
" JEE
m In mixture model case where yi = {zi, x’} there are
many ways to initialize the EM algorithm

m Examples:

Choose K observations at random to define each cluster.
Assign other observations to the nearest “centriod” to form
initial parameter estimates

Pick the centers sequentially to provide good coverage of data

Grow mixture model by splitting (and sometimes removing)
clusters until K clusters are formed

m Can be quite important to quality of solution in practice

©Sham Kakade 2016 ©Sham Kakade 2016 36

18



What you should know
" JE
m K-means for clustering:

algorithm
converges because it's coordinate ascent

m EM for mixture of Gaussians:

How to “learn” maximum likelihood parameters (locally max. like.) in

the case of unlabeled data

m Remember, E.M. can get stuck in local minima, and
empirically it DOES

m EM is coordinate ascent

©Sham Kakade 2016 ©Sham Kakade 2016
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Expectation Maximization (EM) —
Setup

]
m More broadly applicable than just to mixture models
considered so far

m Model: & observable - “incomplete” data
Y not (fully) observable — “complete” data
@ parameters

m Interested in maximizing (wrt @):
plz]60) =) plx,y|0)
Y
m Special case:

r = g(y)

©Sham Kakade 2016 ©Sham Kakade 2016
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Expectation Maximization (EM) —
Derivation

m Step 1

Rewrite desired likelihood in terms of complete data terms

p(y10)=ply|x0)p(x|0)

m Step 2 )
Assume estimate of parameters R
Take expectation with respect to p(y | x, 0)

©Sham Kakade 2016 ©Sham Kakade 2016 39

Expectation Maximization (EM) —
Derivation

m Step 3

Consider log likelihood of data at any 8 relative to log likelihood até

= Aside: Gibbs Inequality E,[log p(z)] > E,[log ¢(x)]
Proof:

©Sham Kakade 2016 ©Sham Kakade 2016 40
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Expectation Maximization (EM) —
Derivation

A~ ~

L. (8) — L. (9) = [U(8,0) = U(9,60)] — [V(8,0) — V(9,0)]

m Step 4 .
Determine conditions under which log likelihood at 0 exceeds that at
Using Gibbs inequality:

©Sham Kakade 2016 ©Sham Kakade 2016 41

Motivates EM Algorithm
" S

m Initial guess:
m Estimate at iteration t;

m E-Step

Compute

= M-Step

Compute

©Sham Kakade 2016 ©Sham Kakade 2016 42
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Example — Mixture Models
" S

m E-Step Compute U(8,6%) = E[logp(y | 6) | z,6Y]
= M-Step Compute o+ — arg max U(,60W)

m Consider v' = {2, 2"} i.id.
p(z',2" | 0) = map(a’ | ¢ui) =
By llogp(y | 0)] =) _ By, flogp(a’, 2" | 6)] =
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Coordinate Ascent Behavior
" S

= Bound log Iikelihoog: A
L(0) = U(8,6") + v (6,0")
>

Lo(00) = U(@6®,60) 4 v (W, 40)

D
’/‘ \
£ \\ Figure from
SN Y KM textbook
3
2\
A
t 9t+1 t+2
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Comments on EM

" J
m Since Gibbs inequality is satisfied with equality only if p=q,
any step that changes § should strictly increase likelihood

m In practice, can replace the M-Step with increasing U instead
of maximizing it (Generalized EM)

m Under certain conditions (e.g., in exponential family), can
show that EM converges to a stationary point of [, (0)

m Often there is a natural choice for y ... has physical meaning

m If you want to choose any y, not necessarily x=g(y), replace
p(y | 0) in Uwith p(y,z | 0)

©Sham Kakade 2016 ©Sham Kakade 2016 45

Initialization
" D

m In mixture model case where yi = {zi, x’} there are
many ways to initialize the EM algorithm

m Examples:

Choose K observations at random to define each cluster.
Assign other observations to the nearest “centriod” to form
initial parameter estimates

Pick the centers sequentially to provide good coverage of data

Grow mixture model by splitting (and sometimes removing)
clusters until K clusters are formed

m Can be quite important to convergence rates in practice
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What you should know
" JEE
m K-means for clustering:

algorithm
converges because it's coordinate ascent

EM for mixture of Gaussians:

How to “learn” maximum likelihood parameters (locally max. like.) in
the case of unlabeled data

Be happy with this kind of probabilistic analysis

Remember, E.M. can get stuck in local minima, and
empirically it DOES

EM is coordinate ascent
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