

Gaussians in d Dimensions

©Sham Kakade 2016

Sham Kakade 2016

Density as Mixture of Gaussians

Approximate density with a mixture of Gaussians

 $p(x^i|\pi,\mu,\Sigma) =$

Sham Kakade 2016 ©Sham Kakade 20

Clustering our Observations Imagine we have an assignment of each x^i to a Gaussian Introduce latent cluster indicator variable z^i Then we have $p(x^i|z^i,\pi,\mu,\Sigma) =$ $p(x^i|z^i,\pi,\mu,\Sigma) =$ $p(x^i|z^i,\pi,\mu,\Sigma) =$ $p(x^i|z^i,\pi,\mu,\Sigma) =$ $p(x^i|z^i,\pi,\mu,\Sigma) =$

Summary of GMM Components

Observations

- $x^i \in \mathbb{R}^d, \quad i = 1, 2, \dots, N$
- ullet Hidden cluster labels $z_i \in \{1,2,\ldots,K\}, \quad i=1,2,\ldots,N$
- Hidden mixture means
- $\mu_k \in \mathbb{R}^d, \quad k = 1, 2, \dots, K$
- $\Sigma_k \in \mathbb{R}^{d \times d}, \quad k = 1, 2, \dots, K$ $\pi_k, \quad \sum_{k=1}^K \pi_k = 1$ Hidden mixture covariances
- Hidden mixture probabilities

Gaussian mixture marginal and conditional likelihood:

$$p(x^{i}|\pi, \mu, \Sigma) = \sum_{z^{i}=1}^{K} \pi_{z^{i}} \ p(x^{i}|z^{i}, \mu, \Sigma)$$

$$p(x^i|z^i,\mu,\Sigma) = \mathcal{N}(x^i|\mu_{z^i},\Sigma_{z^i})$$

Next... back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?

Special case: spherical Gaussians and hard assignments

$$P(z^{i} = k, \mathbf{x}^{i}) = \frac{1}{(2\pi)^{m/2} \|\Sigma_{k}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}^{i} - \mu_{k})^{T} \Sigma_{k}^{-1}(\mathbf{x}^{i} - \mu_{k})\right] P(z^{i} = k)$$

If P(X|z=k) is spherical, with same σ for all classes:

$$P(\mathbf{x}^i \mid z^i = k) \propto \exp\left[-\frac{1}{2\sigma^2} \|\mathbf{x}^i - \mu_k\|^2\right]$$

■ If each xⁱ belongs to one class C(i) (hard assignment), marginal likelihood:

$$\prod_{i=1}^{N} \sum_{k=1}^{K} P(\mathbf{x}^{i}, z^{i} = k) \propto \prod_{i=1}^{N} \exp \left[-\frac{1}{2\sigma^{2}} \left\| \mathbf{x}^{i} - \mu_{C(i)} \right\|^{2} \right]$$

■ Same as K-means!!!

©Sham Kakade 2016

©Sham Kakade 201

17

EM: "Reducing" Unsupervised Learning to Supervised Learning

■ If we knew assignment of points to • classes → Supervised Learning!

- Expectation-Maximization (EM)
 - ☐ Guess assignment of points to classes
 - In standard ("soft") EM: each point associated with prob. of being in each class
 - □ Recompute model parameters
 - □ Iterate

©Sham Kakade 2016

©Sham Kakade 2016

Generic Mixture Models

- Observations:
- Parameters:

- Likelihood:
- Ex. z^i = country of origin, x^i = height of ith person

 □ k^{th} mixture component = distribution of heights in country k

©Sham Kakade 2016

©Sham Kakade 2016

19

ML Estimate of Mixture Model Params

Log likelihood

$$L_x(\theta) \triangleq \log p(\lbrace x^i \rbrace \mid \theta) = \sum_i \log \sum_{z^i} p(x^i, z^i \mid \theta)$$

Want ML estimate

$$\hat{\theta}^{ML} =$$

Neither convex nor concave and local optima

©Sham Kakade 2016

©Sham Kakade 2016

If "complete" data were observed...

lacksquare Assume class labels z^i were observed in addition to x^i

$$L_{x,z}(\theta) = \sum_{i} \log p(x^{i}, z^{i} \mid \theta)$$

- Compute ML estimates
 - □ Separates over clusters *k*!
- Example: mixture of Gaussians (MoG) $\theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$

©Sham Kakade 2016

©Sham Kakade 201

21

Iterative Algorithm

- Motivates a coordinate ascent-like algorithm:
 - 1. Infer missing values z^i given estimate of parameters $\hat{ heta}$
 - 2. Optimize parameters to produce new $\,\hat{ heta}\,$ given "filled in" data z^i
 - 3. Repeat
- Example: MoG (derivation soon...)
 - 1. Infer "responsibilities"

$$r_{ik} = p(z^i = k \mid x^i, \hat{\theta}^{(t-1)}) =$$

2. Optimize parameters

max w.r.t.
$$\pi_k$$
:

max w.r.t.
$$\mu_k, \Sigma_k$$
:

©Sham Kakade 2016

©Sham Kakade 2016

E.M.: The General Case

- E.M. widely used beyond mixtures of Gaussians
 - □ The recipe is the same...
- **E**xpectation Step: Fill in missing data, given current values of parameters, $\theta^{(t)}$
 - ☐ If variable *y* is missing (could be many variables)
 - \square Compute, for each data point \mathbf{x}^{i} , for each value *i* of *y*:
 - P(y=i|xj,θ(t))
- Maximization step: Find maximum likelihood parameters for (weighted) "completed data":
 - \Box For each data point \mathbf{x}^{j} , create k weighted data points
 - \Box Set $\theta^{(t+1)}$ as the maximum likelihood parameter estimate for this weighted data
- Repeat

Sham Kakade 2016

©Sham Kakade 2016

35

Initialization

- In mixture model case where $y^i = \{z^i, x^i\}$ there are many ways to initialize the EM algorithm
- Examples:
 - □ Choose K observations at random to define each cluster. Assign other observations to the nearest "centriod" to form initial parameter estimates
 - □ Pick the centers sequentially to provide good coverage of data
 - ☐ Grow mixture model by splitting (and sometimes removing) clusters until K clusters are formed
- Can be quite important to quality of solution in practice

©Sham Kakade 2016

©Sham Kakade 2016

What you should know

- K-means for clustering:
 - □ algorithm
 - □ converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - ☐ How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- EM is coordinate ascent

©Sham Kakade 2016

©Sham Kakade 2016

37

Expectation Maximization (EM) – Setup

- More broadly applicable than just to mixture models considered so far
- Model: *x* observable "incomplete" data
 - y not (fully) observable "complete" data
 - θ parameters
- Interested in maximizing (wrt θ):

$$p(x \mid \theta) = \sum_{y} p(x, y \mid \theta)$$

Special case:

$$x = g(y)$$

©Sham Kakade 2016

©Sham Kakade 2016

Expectation Maximization (EM) – Derivation

- Step 1
 - $\hfill \square$ Rewrite desired likelihood in terms of complete data terms

$$p(y \mid \theta) = p(y \mid x, \theta)p(x \mid \theta)$$

- Step 2
 - \square Assume estimate of parameters $\hat{ heta}$
 - $\hfill\Box$ Take expectation with respect to $\,p(y\mid x, \hat{\theta})\,$

©Sham Kakade 2016

©Sham Kakade 2016

39

Expectation Maximization (EM) – Derivation

- Step 3
 - \Box Consider log likelihood of data at any θ relative to log likelihood at $\hat{\theta}$ $L_x(\theta) L_x(\hat{\theta})$
- Aside: Gibbs Inequality $E_p[\log p(x)] \ge E_p[\log q(x)]$ Proof:

©Sham Kakade 2016

©Sham Kakade 2016

Expectation Maximization (EM) – Derivation

$$L_x(\theta) - L_x(\hat{\theta}) = [U(\theta, \hat{\theta}) - U(\hat{\theta}, \hat{\theta})] - [V(\theta, \hat{\theta}) - V(\hat{\theta}, \hat{\theta})]$$

- Step 4
 - \Box Determine conditions under which log likelihood at θ exceeds that at $\hat{\theta}$ Using Gibbs inequality:

lf

Then

$$L_x(\theta) \ge L_x(\hat{\theta})$$

©Sham Kakade 2016

©Sham Kakade 2016

41

Motivates EM Algorithm

- Initial guess:
- Estimate at iteration t:
- E-Step

Compute

M-Step

Compute

©Sham Kakade 2016

©Sham Kakade 2016

Example - Mixture Models

- $\begin{array}{ll} \underline{\textbf{E-Step}} & \text{Compute} & U(\theta, \hat{\theta}^{(t)}) = E[\log p(y \mid \theta) \mid x, \hat{\theta}^{(t)}] \\ \underline{\textbf{M-Step}} & \text{Compute} & \hat{\theta}^{(t+1)} = \arg \max_{\theta} U(\theta, \hat{\theta}^{(t)}) \end{array}$ ■ M-Step Compute
- \bullet Consider $y^i = \{z^i, x^i\}$ i.i.d.

$$p(x^i, z^i \mid \theta) = \pi_{z^i} p(x^i \mid \phi_{z^i}) =$$

$$E_{q_t}[\log p(y\mid\theta)] = \sum_i E_{q_t}[\log p(x^i, z^i\mid\theta)] =$$

Coordinate Ascent Behavior

Bound log likelihood:

$$L_x(\theta) = U(\theta, \hat{\theta}^{(t)}) + V(\theta, \hat{\theta}^{(t)})$$

$$\geq$$

$$\geq \\ L_x(\hat{\theta}^{(t)}) = U(\hat{\theta}^{(t)}, \hat{\theta}^{(t)}) + V(\hat{\theta}^{(t)}, \hat{\theta}^{(t)})$$

Figure from KM textbook

Comments on EM

- Since Gibbs inequality is satisfied with equality only if p=q, any step that changes θ should strictly **increase likelihood**
- In practice, can replace the **M-Step** with increasing *U* instead of maximizing it (**Generalized EM**)
- Under certain conditions (e.g., in exponential family), can show that EM converges to a stationary point of $L_x(\theta)$
- Often there is a **natural choice for y** ... has physical meaning
- If you want to choose any y, not necessarily x=g(y), replace $p(y\mid\theta)$ in U with $p(y,x\mid\theta)$

©Sham Kakade 2016

©Sham Kakade 201

45

Initialization

- In mixture model case where $y^i = \{z^i, x^i\}$ there are many ways to initialize the EM algorithm
- Examples:
 - Choose K observations at random to define each cluster.
 Assign other observations to the nearest "centriod" to form initial parameter estimates
 - □ Pick the centers sequentially to provide good coverage of data
 - ☐ Grow mixture model by splitting (and sometimes removing) clusters until K clusters are formed
- Can be quite important to convergence rates in practice

©Sham Kakade 2016

©Sham Kakade 2016

What you should know

- K-means for clustering:
 - □ algorithm
 - □ converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - ☐ How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- EM is coordinate ascent

©Sham Kakade 2016

©Sham Kakade 2016