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Announcements:
" JEE
m Project Milestones coming up
m HW2
Let’s figure it out...
m HW3 posted this week.

Let’s get state of the art on MNIST!
It'll be collaborative

m Today:
Review: Kernels
SVMs
Generalization/review
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What if the data is not linearly separable?

Use features of features

of features of features....
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Feature space can get really large really quickly!




Common kernels
" JEE
m Polynomials of degree exactly d
/ a4 /{2 1 /
K(u,v) = (u-v)?

s
m Polynomials of degree up to d fﬁ 5@4 <

K(u,v) = (u-v+ 1)4 /
m Gaussian (squared exponential) kernel
K(u,v) =exp <_||112;2V|
m Sigmoid 7
K(u,v) =tanh(nu-v +v)

[
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Mercer's Theorem
"
m When do we have a Kernel K(x,x’)? 4
m Definition 1: when there exists an embeddi
()= Bx) B
m Mercer’'s Theorem:
K(x,x’) is a valid kernel if and only if K is a positive

semi-definite. e LR
W PSD in the following sense: e /
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Linear classifiers — Which line is better?
" S




Pick the one with the largest margin!
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: “confidence” = 37 (w - x7 4 wy)
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But there are many planes...
" I
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Review. Normal to a plane

" JEE I
o x! =% +a—7
s
+ ¥ : -
4}, ==
+ & ¥ - =




A Convention: Normalized margin —
Canonical hyperplanes = %) w

N
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Margin maximization using

problem:
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Normalized Problem:

Margin 2,

min o]
»Wo
yj(w-xj—i—wo)Zl,VjG{l, .., N}

canonical hxperplanes
|
v Unnormalized yI,Ivlva}fgo v
yj(w-xj—i—wo) >~,Vied{l,...,

N}




Support vector machines (SVMs)
" S

: 2
o - min - |jwlf;

’ v (w-x? +wo) > 1,V €{l,...,N}

—
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s
* +
i 3 ;‘
* = - m Solve efficiently by many methods,
y = e.g.,
+ + quadratic programming (QP)
= n Well-studied solution algorithms
+ Stochastic gradient descent
& " =
= =
m Hyperplane defined by support
vectors
margin 27/
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What if the data is not linearly

. goeparable?

Use features of features
of features of features....
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What if the data is still not linearly

?
_ seEarabIe. minul

yj(w-xj+w0)21 Vi

+ = W [fdatais notlinearly separable, some
* & = o points don’t satisfy margin constraint:
+ -
P& - + =
= -
+ + = m How bad is the violation?
L =
+ = = =
+

m Tradeoff margin violation with ||w|]:
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SVMs for Non-Linearly Separable meet
my friend the Perceptron...

" JEE
m Perceptron was minimizing the hinge loss:
N
E (—y/ (w-x) + wo))+
j=1

m SVMs minimizes the regularized hinge loss!!

N
[Wl3+C Y (1 =y (w-x) +wo)),
j=1




Stochastic Gradient Descent for SVMs
=

m Perceptron minimization: m SVMs minimization:

N N
Z(—y"(wxj—l—wo))Jr |\w\|§+CZ(l—yj(w-xj+w0))+
j=1 Jj=1

m SGD for Perceptron: m SGD for SVMs:

Wt w® 41 [ym(w(t) x®) < 0] y®Ox®
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SVMs vs logistic regression
" S

m We often want probabilities/confidences (logistic
wins here)

m For classification loss, they are comparable

m Multiclass setting:

Softmax naturally generalizes logistic regression
SVMs have

m What about good old least squares?
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Multiple Classes
" JE
m One can generalize the hinge loss
If no error (by some margin) -> no loss
If error, penalize what you said against the best
m SVMs vs logistic regression

We often want probabilities/confidences (logistic wins
here)

For classification loss, they are
m Latent SVMs
When you have many classes it’s difficult to do
logistic regression
m 2) Kernels
Warp the feature spage... . a

©2016 Sham Kakade 22

11



Generalization/Model
Comparisons
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What method should | use?
" JE

m Linear regression, logistic, SVMs?

m No regularization? Ridge? L17?

m | ran SGD without any regularization and it was
ok?
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Generalization
" JE
m You get N samples.
m You learn a classifier/regression .

m How close are you to optimal?

L(FA)-L(f*) < 227

m (We can look at the above in expectation or with
‘high’ probability).
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Finite Case:
" JEE
m You get N samples.

m You learn a classifier/regressor f* among K
classifiers:

L(FA)-L () <
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Linear Regression
" JEE
m N samples, d dimensions.
m L is the square loss.
m W is the least squares estimate.

L(wh)-L(w*) < O(d/N)

m Need about N=0O(d) samples
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Sparse Linear Regression
" A
m N samples, d dimensions, L is the square loss.

m A is best fit line which only uses k features
(computationally intractable)

L(wA)-L(w*) <k log(d)/N

m true of Lasso under stronger assumptions:
“incoherence”

m When do like sparse regression??

When we believe there are a few of GOOD features.
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Learning a Halfspace

" JEE
m You get N samples, in D dimensions.
m L is the 0/1 loss.

m fA is the empirical risk minimizer
(computationally infeasible to compute)

L(WA)-L(w*) < \/d Tog(N)/N

m Need N=0O(d) samples

What about Regularization?
" JEE

m Let’s look at (dual) constrained problem

m Minimize:

min LAw)
such ||w||>, < W,

m Where LA is our training error.
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Optimization and Regularization?
" JE
m | did SGD without regularization and it was fine?

m “Early stopping” implicitly regularizes (in L2)

L2 Regularization
" JEE
m Assume [|w[[, <W; [|x][; < R;
m L is some convex loss (logistic,hinge,square)

m w” is the constrained minimizer (computationally
tractable to compute)

L(W")-L(W*)<W,R,/VN

m DIMENSION FREE “margin” Bound!
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L1 Regularization
" JE
m Assume [|w||; < Wy [Ix]], < R,
m L is some convex loss (logistic,hinge,square)

m wW” is the constrained minimizer (computationally
tractable to compute)

L(W/\)_L(W*)<W1Roolog(d)

VN

m Promotes sparsity, one can think of W1 as the
“sparsity level/k” (mild dimension dependence,

log(d).
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