Kernels and Support Vector Machines

Machine Learning – CSE446
Sham Kakade
University of Washington
November 1, 2016

Announcements:

- Project Milestones coming up
- HW2
 - You’ve implemented GD, SGD, etc…
- HW3 posted this week.
 - Let’s get state of the art on MNIST!
 - It’ll be collaborative

- Today:
 - Review: the perceptron, margins, and separability
 - Kernels & SVMs
Support Vector Machines (Two Ideas Mixed up)

1) An attempt to better optimize the classification loss?
 - Questionable?
 - Latent SVMs are interesting.

2) Kernels
 - Warp the feature space
 - This idea is actually more general

The success of SVMS?

Linear Separability: More formally, Using Margin

Data linearly separable, if there exists
 - a vector
 - a margin
 - Such that
Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - Given a sequence of labeled examples:
 - Each feature vector has bounded norm:
 - If dataset is linearly separable:

- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data

- However, real world not linearly separable
 - Can't expect never to make mistakes again
What if the data is not linearly separable?

Use features of features of features of features….

\[\Phi(x) : \mathbb{R}^m \mapsto F \]

Feature space can get really large really quickly!
Higher order polynomials

\[\text{num. terms} = \binom{d + m - 1}{d} = \frac{(d + m - 1)!}{d!(m - 1)!} \]

- \(m \) – input features
- \(d \) – degree of polynomial

![Graph showing the growth of number of monomial terms with increasing number of input dimensions]

Perceptron Revisited

- Given weight vector \(w^{(t)} \), predict point \(x \) by:

 Mistake at time \(t \): \(w^{(t+1)} \leftarrow w^{(t)} + y^{(t)} x^{(t)} \)

- Thus, write weight vector in terms of mistaken data points only:
 - Let \(M^{(t)} \) be time steps up to \(t \) when mistakes were made:

- Prediction rule now:

- When using high dimensional features:
Dot-product of polynomials

\[\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d \]

Finally the Kernel Trick!!!

(Kernelized Perceptron)

- Every time you make a mistake, remember \((x^{(t)}, y^{(t)})\)

- Kernelized Perceptron prediction for \(x\):

\[
\text{sign}(w^{(t)} \cdot \phi(x)) = \sum_{j \in M^{(t)}} y^{(j)} \phi(x^{(j)}) \cdot \phi(x) = \sum_{j \in M^{(t)}} y^{(j)} k(x^{(j)}, x)
\]
Polynomial kernels

- All monomials of degree d in $O(d)$ operations:
 $$\Phi(u) \cdot \Phi(v) = (u \cdot v)^d$$
 polynomials of degree exactly d

- How about all monomials of degree up to d?
 - Solution 0:
 - Better solution:

Common kernels

- Polynomials of degree exactly d
 $$K(u, v) = (u \cdot v)^d$$

- Polynomials of degree up to d
 $$K(u, v) = (u \cdot v + 1)^d$$

- Gaussian (squared exponential) kernel
 $$K(u, v) = \exp\left(-\frac{||u - v||^2}{2\sigma^2}\right)$$

- Sigmoid
 $$K(u, v) = \tanh(\eta u \cdot v + \nu)$$
Linear classifiers – Which line is better?
Pick the one with the largest margin!

“confidence” = \(y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0) \)

Maximize the margin

\[
\max_{\gamma, \mathbf{w}, w_0} \gamma \\
y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0) \geq \gamma, \forall j \in \{1, \ldots, N\}
\]
But there are many planes...

Review: Normal to a plane

$$x^j = \bar{x}^j + \alpha \frac{w}{||w||}$$
A Convention: Normalized margin – Canonical hyperplanes

\[x^j = \bar{x}^j + \alpha \frac{w}{||w||} \]

Margin maximization using canonical hyperplanes

Unnormalized problem:
\[\max_{\gamma, w, w_0} \gamma \]
\[y^j (w \cdot x^j + w_0) \geq \gamma, \forall j \in \{1, \ldots, N\} \]

Normalized Problem:
\[\min_{w, w_0} \frac{||w||^2}{2} \]
\[y^j (w \cdot x^j + w_0) \geq 1, \forall j \in \{1, \ldots, N\} \]
Support vector machines (SVMs)

\[\min_{\mathbf{w}, w_0} \|\mathbf{w}\|^2_2 \]

\[y_j (\mathbf{w} \cdot \mathbf{x}_j + w_0) \geq 1, \forall j \in \{1, \ldots, N\} \]

- Solve efficiently by many methods, e.g.,
 - quadratic programming (QP)
 - Well-studied solution algorithms
 - Stochastic gradient descent
- Hyperplane defined by support vectors

What if the data is not linearly separable?

Use features of features of features of features....
What if the data is still not linearly separable?

\[
\min_{\mathbf{w}, w_0} \|\mathbf{w}\|_2^2 \\
y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0) \geq 1, \forall j
\]

- If data is not linearly separable, some points don’t satisfy margin constraint:
- How bad is the violation?
- Tradeoff margin violation with \(\|\mathbf{w}\|\):

SVMs for Non-Linearily Separable meet my friend the Perceptron…

- Perceptron was minimizing the hinge loss:
 \[
 \sum_{j=1}^{N} \left(-y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0)\right)_+
 \]
- SVMs minimizes the regularized hinge loss!!
 \[
 \|\mathbf{w}\|_2^2 + C \sum_{j=1}^{N} \left(1 - y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0)\right)_+
 \]
Stochastic Gradient Descent for SVMs

- Perceptron minimization:
 \[\sum_{j=1}^{N} (-y_j(w \cdot x_j + w_0))_+ \]
- SVMs minimization:
 \[||w||^2 + C \sum_{j=1}^{N} (1 - y_j(w \cdot x_j + w_0))_+ \]
- SGD for Perceptron:
 \[w^{(t+1)} \leftarrow w^{(t)} + \frac{1}{N} \sum \left[y_j(w^{(t)} \cdot x_j) \leq 0 \right] y_j x_j \]
- SGD for SVMs:

SVMs vs logistic regression

- We often want probabilities/confidences (logistic wins here)
- For classification loss, they are comparable

- Multiclass setting:
 - Softmax naturally generalizes logistic regression
 - SVMs have
- What about good old least squares?
Multiple Classes

- One can generalize the hinge loss
 - If no error (by some margin) -> no loss
 - If error, penalize what you said against the best

- SVMs vs logistic regression
 - We often want probabilities/confidences (logistic wins here)
 - For classification loss, they are

- Latent SVMs
 - When you have many classes it’s difficult to do logistic regression

- 2) Kernels
 - Warp the feature space
Slack variables – Hinge loss

\[
\text{minimize}_{w, b} \quad w \cdot w \quad (w \cdot x_j + b) y_j \geq 1, \quad \forall j
\]

- If margin < 1, pay linear penalty
- If margin > 1, don't care

Side note: What’s the difference between SVMs and logistic regression?

SVM:

\[
\text{minimize}_{w, b} \quad w \cdot w + C \sum_j \xi_j \\
(w \cdot x_j + b) y_j \geq 1 - \xi_j, \quad \forall j \\
\xi_j \geq 0, \quad \forall j
\]

Logistic regression:

\[
P(Y = 1 \mid x, w) = \frac{1}{1 + e^{-(w \cdot x + b)}}
\]

Log loss:

\[
- \ln P(Y = 1 \mid x, w) = \ln \left(1 + e^{-(w \cdot x + b)}\right)
\]
What about multiple classes?

One against All

Learn 3 classifiers:
Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights

\[w(y_j) . x_j + b(y_j) \geq w(y') . x_j + b(y') + 1, \quad \forall y' \neq y_j, \quad \forall j \]

Learn 1 classifier: Multiclass SVM

\[
\minimize_{w,b} \quad \sum_y w(y) . w(y) + C \sum_j \xi_j \\
\text{s.t.} \quad w(y_j) . x_j + b(y_j) \geq w(y') . x_j + b(y') + 1 - \xi_j, \quad \forall y' \neq y_j, \quad \forall j \\
\xi_j \geq 0, \quad \forall j
\]