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Reading Your Brain, Simple Example

" —

airwise classification accuracy: 85%

[Mitchell et al.]

Person = 0 Animal




Classification

=
m Learn: h:X— Y
X — features
Y — target classes

m Conditional probability: P(Y|X)

m Suppose you know P(Y|X) exactly, how should
you classify?
Bayes optimal classifier:

m How do we estimate P(Y|X)?
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Link Functions
" JEE
m Estimating P(Y|X): Why not use standard linear
regression?

m Combing regression and probability?
Need a mapping from real values to [0,1]
A link function!




Logistic Regression
" I

[m Learn P(Y|X) directly

Assume a particular functional form for link

function

Sigmoid applied to a linear function of the input

features:

P(Y =0|X,W) =

1

Logistic 1
function —_—
(or Sigmoid); 1 T exp(—2)

1+ exp(wo + X wiX;) % v

Features can be discrete or continuous!
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Understanding the sigmoid

g(wo + Z w;T;) =

W0=-2, W1=-1

1

W0=0, W1 =-1

1 4 ewo D wiz;

wo=0, w;=-0.5
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Logistic Regression -
a Linear classifier T+ eap(—2)
" S :

44444

g(wo + Zwﬂi) =

©Sham Kakade 2016 9

Very convenient!

u 1
P(Y =0 |X =< X1,..Xn>) =
| " 1 + exp(wo + X w; X;)

implies
exp(wo + X; wi X;)

P(lY =1 X =< Xq1,..Xn>) =
| " 1+ exp(wo + X wiX;)

implies
P(Y =1|X)
v — oy = exp(wo + ) wiX;)
P =0]X) ; o linear
classification
implies 1 rule!
P(Y =1|X)
n—— = i X,
Py =olx) ot 2w




Optimizing concave function —
Gradient ascent
SN

m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

ol(w) ol(w)

. I

Gradient: Vwl(w) = |

Update rule: Aw — ﬁvwl(W)

t+1 t ol(w)
WD 0 4, OUW)
8’11]1'
m Gradient ascent is simplest of optimization approaches

e.g., Conjugate gradient ascent can be much better
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Loss function: Conditional Likelihood
" B

m Have a bunch of iid data of the form:

m Discriminative (logistic regression) loss function:
Conditional Data Likelihood

N - -
InP(DY | DX7W) = Z lnP(yJ |XJ,W)
i=1
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Expressing Conditional Log Likelihood

1

" JEE POT= 0w = 1 1 oo + S wi)
I(w) =Y InP(y/|x), w) POV = 1X,w) = P00+ TiwiXy)
3 ’ 1+ exp(wo + X; wiX;)

((w)=> y/ nP(Y =1]x/,w) + (1 — /) n P(Y = 0%/, w)
J
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Maximizing Conditional Log Likelihood

1

" JEE PO O = T o + mwiX))
S P(Y =1|X,W) = eap(wo + Xi wiXi)
I(w) = In HP(yJ|XJ,W) 1+ exp(wo + X; wiX;)

J

= Y ¢ (wo+ Y wiz]) — In(1 + exp(wo + 3 wizl))
J i :

Good news: I(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize
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Maximize Conditional Log Likelihood:
Gradient ascent

|
Uw) = Y ui(wo + > wad) — In(L + eap(ug + 3 war))
Gradient Ascent for LR

" I

Gradient ascent algorithm: iterate until change < ¢

wét—{-l) . w(()t) + nz[y‘j —~P(YI=1]x), W)
J

Fori=1,..., K,

wZ(t—}—l) - ,wz(t) +nY &y - P(YI =1 x7, W]
J

repeat




Regularization in linear regression
" S

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X-0.30 X2 -1.1 +4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2
2 %
w* = arg minz (t(xj) - Zwihi(xj)> + )\Z w?
j i i=1
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Linear Separability

" JEE
+ -
== =
+ [
4%-4}-.# _-
+ 4 T -
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Large parameters — Overfitting
- m

1 1 1

14e2 14 e 2 1 4 ¢—100z

m [f data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood
" JEE

= Add regular|zat|on penalty, e.g., L2

1nHP ¥ |x7, w) — —HwH2

m Practical note about wy:

m Gradient of regularized likelihood:
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Standard v. Regularized Updates
" A
m Maximum conditional IikeIih}Q]od estimate

w* = argmax In H Py |x?,w)
7j=1

t

Ww0TD O nzwg[yj —P(Y! =1 |xI, W)
J

m Regularized maximum conditional likelihood estimate

k
L A
* J |~eJ — 2
w" = arg max In | | Py |x?,w) 5 E_l w;

Jj=1

wi(t—'_l) — wz-(t)-i-?? {_sz-(t) + ng[yj —P(YI =1, W)
j
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Please Stop!! Stopping criterion

'_
hleP TIx?, w)) = Allwl[3

m When do we stop domg gradient descent?

m Because /(w) is strongly concave:
i.e., because of some technical condition

bw™) —(w )Sﬁllw( w)l[3

m Thus, stop when:
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Digression: Logistic regression for
_ more than 2 classes
s

m Logistic regression in more general case (C classes), where
Yin{0,...,C-1}
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Digression: Logistic regression more

generally
" JEE
m Logistic regression in more general case, where
Y in {0,...,C-1}

for ¢>0

k
P(Y = C|X,W) — exp(wco + ZiZl wci$i)

C— k
1+ Zc/:i exp(wero + Zi:l Weri %5

for c=0 (normalization, so no weights for this class)
1

P(Y = O|X,W) = —
1+ ZS:} eXP(wc’o + Zle wcxixi)

Learning procedure is basically the same
as what we derived!
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Stochastic Gradient
Descent
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The Cost, The Cost!!l Think about

the cost...
" JEE
m What's the cost of a gradient update step for LR?7?7?

WD o ® {—sz(t) +Y - P(yi=1| Xj,“%]}
j
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Learning Problems as Expectations
" S

m  Minimizing loss in training data:

Given dataset:
m Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

N
1 .
—— J
(p(w) = N E l(w,x7)
Jj=1
m However, we should really minimize expected loss on all data:

l(w) = Ex [{(w,x)] = /p(x)ﬁ(w,x)dx

m So, we are approximating the integral by the average on the training data
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Gradient ascent in Terms of Expectations
" JEE

m “True” objective function:

l(w) = Ex [{(w,x)] = /p(x)ﬁ(w,x)dx
m Taking the gradient:

m “True” gradient ascent rule:

m How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
" JEE
m “True” gradient: Vﬁ(w) = F [VK(W,X)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent for

. Logistic Reﬁression

m Logistic loss as a stochastic function:

Ex [((w,x)] = Ex [In P(y|x, w) — A||w]|3]

m Batch gradient ascent updates:

N
(t+1) ® WO O, 6) 115 ) )
wy Y wy +77{ Aw; +N2xi [y — P(Y = 1]x), w®)]

j=1

m Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wét) +n {—)\wgt) + xgt) ' — Py =1x, W(t))]}
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Stochastic Gradient Ascent:

general case
|

m Given a stochastic function of parameters:
Want to find maximum

m Start from w(©)

m Repeat until convergence:
Get a sample data point xt
Update parameters:

m Works on the online learning setting!
m Complexity of each gradient step is constant in number of examples!
m In general, step size changes with iterations
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What you should know...
" JEE
m Classification: predict discrete classes rather than
real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent
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Stopping criterion
" —
mHP %7, w)) — A |w]|2

m Regularized logistic regression is strongly concave
Negative second derivative bounded away from zero:

m Strong concavity (convexity) is super helpful!

m For example, for strongly concave /(w):

* 1 2
Uw™) = Uw) < S [IVEw)]l2
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Convergence rates for gradient

descent/ascent
" S

m Number of Iterations to get to accuracy
l(w*) —b(w) < ¢

m If func Lipschitz: O(1/€?)
m If gradient of func Lipschitz: O(1/e)

m If func is strongly convex: O(In(1/€))
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