

Classification

- Learn: h:X → Y
 - X features
 - □ Y target classes
- Conditional probability: P(Y|X)
- Suppose you know P(Y|X) exactly, how should you classify?
 - □ Bayes optimal classifier:
- How do we estimate P(Y|X)?

Link Functions

■ Estimating P(Y|X): Why not use standard linear regression?

- Combing regression and probability?
 - □ Need a mapping from real values to [0,1]
 - ☐ A link function!

Logistic Regression
$$\frac{1}{1+exp(-z)}$$

Learn P(Y|X) directly

Assume a particular functional form for link function
Sigmoid applied to a linear function of the input features:
$$P(Y=0|X,W)=\frac{1}{1+exp(w_0+\sum_i w_i X_i)}$$

Features can be discrete or continuous!

Very convenient!

$$P(Y = 0 \mid X = \langle X_1, ... X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 1 \mid X = < X_1, ... X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y=1|X)}{P(Y=0|X)} = exp(w_0 + \sum_i w_i X_i)$$

classification rule!

implies
$$\ln \frac{P(Y=1 \mid X)}{P(Y=0 \mid X)} = w_0 + \sum_i w_i X_i$$

Optimizing concave function -**Gradient ascent**

 Conditional likelihood for Logistic Regression is concave. Find optimum with gradient ascent

Gradient:
$$\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

- Gradient ascent is simplest of optimization approaches
 - □ e.g., Conjugate gradient ascent can be much better

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form:
- Discriminative (logistic regression) loss function: **Conditional Data Likelihood**

$$\ln P(\mathcal{D}_Y \mid \mathcal{D}_{\mathbf{X}}, \mathbf{w}) = \sum_{j=1}^{N} \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

Expressing Conditional Log Likelihood

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) \equiv \sum_j \ln P(y^j | \mathbf{x}^j, \mathbf{w})$$

$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$\ell(\mathbf{w}) = \sum_{j} y^{j} \ln P(Y = 1 | \mathbf{x}^{j}, \mathbf{w}) + (1 - y^{j}) \ln P(Y = 0 | \mathbf{x}^{j}, \mathbf{w})$$

©Sham Kakade 2016

13

Maximizing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} y^{j} (w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$$

Good news: $I(\mathbf{w})$ is concave function of \mathbf{w} , no local optima problems

Bad news: no closed-form solution to maximize I(w)

Good news: concave functions easy to optimize

©Sham Kakade 2016

Maximize Conditional Log Likelihood: Gradient ascent

$$l(\mathbf{w}) = \sum_{j} y^{j}(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$$

©Sham Kakade 2016

15

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ϵ

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

©Sham Kakade 2016

Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:

-2.2 + 3.1 X - 0.30 X²

-1.1 + 4,700,910.7 X - 8,585,638.4 X² + ...

■ Regularized least-squares (a.k.a. ridge regression), for λ >0:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^k w_i^2$$

@Sham Kakada 2016

13

Sham Kakade 2016

Large parameters → Overfitting

- If data is linearly separable, weights go to infinity
 - □ In general, leads to overfitting:
- Penalizing high weights can prevent overfitting...

@Sham Kakada 2016

19

Regularized Conditional Log Likelihood

Add regularization penalty, e.g., L₂:

$$\ell(\mathbf{w}) = \ln \prod_{j=1}^{N} P(y^{j} | \mathbf{x}^{j}, \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

- Practical note about w₀:
- Gradient of regularized likelihood:

©Sham Kakade 2016

Standard v. Regularized Updates

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ \ln\prod_{j=1} P(y^j | \mathbf{x}^j, \mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

Regularized maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ \ln\prod_{j=1}^N P(y^j|\mathbf{x}^j, \mathbf{w}) - \frac{\lambda}{2} \sum_{i=1}^k w_i^2$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

©Sham Kakade 2016

21

Please Stop!! Stopping criterion

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \lambda ||\mathbf{w}||_{2}^{2}$$

- When do we stop doing gradient descent?
- Because *I*(**w**) is strongly concave:
 - □ i.e., because of some technical condition

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

■ Thus, stop when:

©Sham Kakade 2016

Digression: Logistic regression for more than 2 classes

Logistic regression in more general case (C classes), where Y in {0,...,C-1}

©Sham Kakade 2016

23

Digression: Logistic regression more generally

Logistic regression in more general case, where Y in {0,...,C-1}

for c>0
$$P(Y = c | \mathbf{x}, \mathbf{w}) = \frac{\exp(w_{c0} + \sum_{i=1}^{k} w_{ci} x_i)}{1 + \sum_{c'=1}^{C-1} \exp(w_{c'0} + \sum_{i=1}^{k} w_{c'i} x_i)}$$

for c=0 (normalization, so no weights for this class)

$$P(Y = 0|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \sum_{c'=1}^{C-1} \exp(w_{c'0} + \sum_{i=1}^{k} w_{c'i} x_i)}$$

Learning procedure is basically the same as what we derived!

©Sham Kakade 2016

The Cost, The Cost!!! Think about the cost...

What's the cost of a gradient update step for LR???

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

©Sham Kakade 2016

Learning Problems as Expectations

- Minimizing loss in training data:
 - □ Given dataset:
 - Sampled iid from some distribution p(x) on features:
 - □ Loss function, e.g., hinge loss, logistic loss,...
 - □ We often minimize loss in training data:

$$\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^{j})$$

However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

■ So, we are approximating the integral by the average on the training data

©Sham Kakade 2016

27

Gradient ascent in Terms of Expectations

"True" objective function:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

- Taking the gradient:
- "True" gradient ascent rule:
- How do we estimate expected gradient?

©Sham Kakade 2016

SGD: Stochastic Gradient Ascent (or Descent)

- lacktriangledown "True" gradient: $abla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[
 abla \ell(\mathbf{w}, \mathbf{x})
 ight]$
- Sample based approximation:
- What if we estimate gradient with just one sample???
 - □ Unbiased estimate of gradient
 - □ Very noisy!
 - □ Called stochastic gradient ascent (or descent)
 - Among many other names
 - □ VERY useful in practice!!!

©Sham Kakade 2016

29

Stochastic Gradient Ascent for Logistic Regression

Logistic loss as a stochastic function:

$$E_{\mathbf{x}}\left[\ell(\mathbf{w}, \mathbf{x})\right] = E_{\mathbf{x}}\left[\ln P(y|\mathbf{x}, \mathbf{w}) - \lambda ||\mathbf{w}||_{2}^{2}\right]$$

Batch gradient ascent updates:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^N x_i^{(j)} [y^{(j)} - P(Y = 1 | \mathbf{x}^{(j)}, \mathbf{w}^{(t)})] \right\}$$

- Stochastic gradient ascent updates:
 - □ Online setting:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

©Sham Kakade 2016

Stochastic Gradient Ascent: general case

- Given a stochastic function of parameters:
 - □ Want to find maximum
- Start from w⁽⁰⁾
- Repeat until convergence:
 - □ Get a sample data point x^t
 - □ Update parameters:
- Works on the online learning setting!
- Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations

©Sham Kakade 2016

31

What you should know...

- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model

 □ Logistic function maps real values to [0,1]
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Cost of gradient step is high, use stochastic gradient descent

©Sham Kakade 2016

Stopping criterion

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \lambda ||\mathbf{w}||_{2}^{2}$$

- Regularized logistic regression is strongly concave
 - □ Negative second derivative bounded away from zero:
- Strong concavity (convexity) is super helpful!!
- For example, for strongly concave *l*(**w**):

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

©Sham Kakade 2016

33

Convergence rates for gradient descent/ascent

Number of Iterations to get to accuracy

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \epsilon$$

- If func Lipschitz: O(1/є²)
- If gradient of func Lipschitz: O(1/ε)
- If func is strongly convex: O(ln(1/ε))

©Sham Kakade 2016