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Announcements:

 HW1 due on Friday.

 Readings: please do them.

 Project Proposals: please start thinking about it!

 Today: 

 Review: cross validation

 Feature selection

 Lasso
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Review: 

Cross-Validation
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Regularization in Regression

 Overfitting usually leads to very large parameter choices, e.g.:

 Regularization: or “Shrinkage” procedure

 How do we pick the regularization constant λ?? (and pick models?)

 We could use the test set? Or another hold out set?

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + …
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(LOO) Leave-one-out cross validation

 Consider a validation set with 1 example:

 D – training data

 D\j – training data with j th data point moved to validation set

 Learn classifier hD\j with D\j dataset

 Estimate true error as squared error on predicting t(xj):

 Unbiased estimate of errortrue(hD\j)!

 Seems really bad estimator, but wait!

 LOO cross validation: Average over all data points j:

 For each data point you leave out, learn a new classifier hD\j

 Estimate error as: 
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LOO cross validation is (almost) 

unbiased estimate of true error of hD!

 When computing LOOCV error, we only use N-1 data points

 So it’s not estimate of true error of learning with N data points!

 Usually pessimistic, though – learning with less data typically gives worse answer

 LOO is “almost” unbiased!

 Asymptotically (for large N), under some conditions.

 It is reasonable to use in practice.

 Great news: Use LOO error for model selection!! (e.g., picking λ)

 LOO is computationally costly! (exception: see HW)

 You have to run your algorithm N times.

 Practice: “K-fold” cross validation
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What you need to know…

 Never ever ever ever ever ever ever ever ever

ever ever ever ever ever ever ever ever ever

ever ever ever ever ever ever ever ever ever 

train on the test data

 Use cross-validation to choose parameters

 Leave-one-out is usually the best, but it is slow…

 use k-fold cross-validation
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Sparsity

 Vector w is sparse, if many entries are zero:

 Very useful for many tasks, e.g., 

 Efficiency:  If size(w) = 100B, each prediction is expensive:

 If part of an online system, too slow

 If w is sparse, prediction computation only depends on number of non-zeros

 Interpretability:  What are the 

relevant dimension to make a 

prediction?

 E.g., what are the parts of the 

brain associated with particular 

words?

 But computationally 

intractable to perform 

“all subsets” regression
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Simple greedy model selection algorithm

 Pick a dictionary of features
 e.g., polynomials for linear regression

 Greedy heuristic:
 Start from empty (or simple) set of 

features F0 = 

 Run learning algorithm for current set 
of features Ft

 Obtain weights for these features

 Select next best feature hi(x)*

 e.g., hj(x) that results in lowest training
error learner when using Ft + {hj(x)*}

 Ft+1  Ft + {hi(x)*}

 Recurse
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Greedy model selection

 Applicable in many other settings:

 Considered later in the course:

 Logistic regression: Selecting features (basis functions)

 Naïve Bayes: Selecting (independent) features P(Xi|Y)

 Decision trees: Selecting leaves to expand

 Only a heuristic!

 Finding the best set of k features is computationally 

intractable!

 Sometimes you can prove something strong about it…

 There are many more elaborate methods out there
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When do we stop???

 Greedy heuristic:

 …

 Select next best feature Xi
*

 E.g. hj(x) that results in lowest training error

learner when using Ft + {hj(x)*}

 Recurse
When do you stop???

 When training error is low enough?

 When test set error is low enough?

 Using cross validation?
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Regularization in Linear Regression

 Overfitting usually leads to very large parameter choices, e.g.:

 Regularized or penalized regression aims to impose a 

“complexity” penalty by penalizing large weights

 “Shrinkage” method

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + …
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Variable Selection by Regularization
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 Ridge regression: Penalizes large weights

 What if we want to perform “feature selection”?

 E.g., Which regions of the brain are important for word prediction?

 Can’t simply choose features with largest coefficients in ridge solution

 Try new (convex) penalty: Penalize non-zero weights

 Regularization penalty:

 Leads to sparse solutions

 Just like ridge regression, solution is indexed by a continuous param λ

 Major impact in: statistics, machine learning & electrical engineering 
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LASSO Regression
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 LASSO: least absolute shrinkage and selection operator

 New objective:
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(Related) Constrained Optimization

 LASSO solution:
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Geometric Intuition for Sparsity
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Optimizing the LASSO Objective

 LASSO solution:
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Coordinate Descent

 Given a function F

 Want to find minimum

 Often, hard to find minimum for all coordinates, but easy for one coordinate

 Coordinate descent:

 How do we pick next coordinate?

 Super useful approach for *many* problems

 Converges to optimum in some cases, such as LASSO
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Optimizing LASSO Objective 

One Coordinate at a Time

 Taking the derivative:

 Residual sum of squares (RSS): 

 Penalty term:
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Subgradients of Convex Functions

 Gradients lower bound convex functions:

 Gradients are unique at w iff function differentiable at w

 Subgradients: Generalize gradients to non-differentiable points:

 Any plane that lower bounds function:
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Taking the Subgradient

 Gradient of RSS term:

 If no penalty:

 Subgradient of full objective:
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Setting Subgradient to 0
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Soft Thresholding
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Coordinate Descent for LASSO 

(aka Shooting Algorithm)

 Repeat until convergence

 Pick a coordinate l at (random or sequentially)

 Set:

 Where: 

 For convergence rates, see Shalev-Shwartz and Tewari 2009

 Other common technique = LARS

 Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path

 Typical approach: select λ using cross validation
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Now: LASSO Coefficient Path 
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What you need to know

 Variable Selection: find a sparse solution to learning 

problem

 L1 regularization is one way to do variable selection

 Applies beyond regression

 Hundreds of other approaches out there

 LASSO objective non-differentiable, but convex 

Use subgradient

 No closed-form solution for minimization  Use 

coordinate descent

 Shooting algorithm is simple approach for solving 

LASSO
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