0 Policies

Writing: Please submit your HW as a typed pdf document (not handwritten). It is encouraged you write all your work, though you may use another comparable typesetting method.

Coding: You must write your own code. You may use any numerical linear algebra packaged, but you may not use machine learning libraries (e.g. sklearn, tensorflow) unless otherwise specified.

Collaboration: List the names of all people you collaborated with and for which question(s). Each student must understand, write, and hand in their own answers. In addition, each student must write and submit their own code in the programming part of the assignment (we may run your code).

Acknowledgments: We expect you to make an honest effort to solve the problems individually. As we sometimes reuse problem set questions from previous years, covered by papers and webpages, we expect the students not to copy, refer to, or look at the solutions in preparing their answers (referring to unauthorized material is considered a violation of the honor code). Similarly, we expect to not to google directly for answers (though you are free to google for knowledge about the topic). If you do happen to use other material, it must be acknowledged here, with a citation on the submitted solution.

1 Probability [5 points]

Let X_1 and X_2 be independent, continuous random variables uniformly distributed on $[0, 1]$. Let $X = \max(X_1, X_2)$. Compute

1. (1 points) $E(X)$.
2. (2 points) $Var(X)$.
3. (2 points) $Cov(X, X_1)$.

2 MLE [5 points]

This question uses a discrete probability distribution known as the Poisson distribution. A discrete random variable X follows a Poisson distribution with parameter λ if

$$Pr(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \quad k \in \{0, 1, 2, \ldots \}$$
Imagine we have a gumball machine which dispenses a random number of gumballs each time you insert a quarter. Assume that the number of gumballs dispensed is Poisson distributed (i.i.d) with parameter \(\lambda \).

Curious and sugar-deprived, you insert 8 quarters one at a time and record the number of gumballs dispensed on each trial:

<table>
<thead>
<tr>
<th>Trial</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gumballs</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Let \(G = (G_1, \ldots, G_n) \) be a random vector where \(G_i \) is the number of gumballs dispensed on trial \(i \):

1. (2 points) Give the log-likelihood function of \(G \) given \(\lambda \).
2. (2 points) Compute the MLE for \(\lambda \) in the general case.
3. (1 point) Compute the MLE for \(\lambda \) using the observed \(G \).

3 Linear Regression and LOOCV [10 points]

In class you learned about using cross validation as a way to estimate the true error of a learning algorithm. A solution that provides an almost unbiased estimate of this true error is Leave-One-Out Cross Validation (LOOCV), but it can take a really long time to compute the LOOCV error. In this problem you will derive an algorithm for efficiently computing the LOOCV error for linear regression using the Hat Matrix. \footnote{Unfortunately, such an efficient algorithm may not be easily found for other learning methods.} (This is the cool trick alluded to in the slides!)

Assume that there are \(n \) training examples, \((X_1, y_1), (X_2, y_2), \ldots, (X_n, y_n)\), where each input data point \(X_i \) has \(d \) real valued features. The goal of regression is to learn to predict \(y_i \) from \(X_i \). The linear regression model assumes that the output \(y \) is a linear combination of the input features plus Gaussian noise with weights given by \(w \).

We can write this in matrix form by stacking the data points as the rows of a matrix \(X \) so that \(x_i^{(j)} \) is the \(i \)-th feature of the \(j \)-th data point. Then writing \(Y \), \(w \) and \(\epsilon \) as column vectors, we can write the matrix form of the linear regression model as:

\[
Y = Xw + \epsilon
\]

where:

\[
Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \ldots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \ldots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(n)} & x_2^{(n)} & \ldots & x_d^{(n)} \end{bmatrix}, w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}, \text{ and } \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}
\]

Assume that \(\epsilon_i \) is normally distributed with variance \(\sigma^2 \). We saw in class that the maximum likelihood estimate of the model parameters \(w \) (which also happens to minimize the sum of squared prediction errors) is given by the Normal equation:

\[
\hat{w} = (X^TX)^{-1}X^TY
\]

Define \(\hat{Y} \) to be the vector of predictions using \(\hat{w} \) if we were to plug in the original training set \(X \):

\[
\hat{Y} = X\hat{w} = X(X^TX)^{-1}X^TY = HY
\]
where we define $H = X(X^TX)^{-1}X^T$ (H is often called the Hat Matrix).

As mentioned above, \hat{w}, also minimizes the sum of squared errors:

$$\text{SSE} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Now recall that the Leave-One-Out Cross Validation score is defined to be:

$$\text{LOOCV} = \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2$$

where $\hat{Y}^{(-i)}$ is the estimator of Y after removing the i-th observation (i.e., it minimizes $\sum_{j \neq i} (y_j - \hat{y}_j^{(-i)})^2$).

1. (2 points) What is the time complexity of computing the LOOCV score naively? (The naive algorithm is to loop through each point, performing a regression on the $n-1$ remaining points at each iteration.)

 Hint: The complexity of matrix inversion is $O(k^3)$ for a $k \times k$ matrix.

2. (1 point) Write \hat{y}_i in terms of H and Y.

3. (2 points) Show that $\hat{Y}^{(-i)}$ is also the estimator which minimizes SSE for Z where

 $$Z_j = \begin{cases} y_j, & j \neq i \\ \hat{y}_i^{(-i)}, & j = i \end{cases}$$

4. (1 point) Write $\hat{y}_i^{(-i)}$ in terms of H and Z. By definition, $\hat{y}_i^{(-i)} = Z_i$, but give an answer that is analogous to 2.

5. (2 points) Show that $\hat{y}_i - \hat{y}_i^{(-i)} = H_{ii}y_i - H_{ii}\hat{y}_i^{(-i)}$, where H_{ii} denotes the i-th element along the diagonal of H.

6. (2 points) Show that

 $$\text{LOOCV} = \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - H_{ii}} \right)^2$$

What is the algorithmic complexity of computing the LOOCV score using this formula?

Note: We see from this formula that the diagonal elements of H somehow indicate the impact that each particular observation has on the result of the regression.

4 Regularization Constants [16 points]

We have discussed the importance of regularization as a technique to avoid overfitting our models. For linear regression, we have mentioned both LASSO (which uses the L_1 norm as a penalty), and ridge regression (which uses the squared L_2 norm as a penalty). In practice, the scaling factor of these penalties has a significant impact on the behavior of these methods, and must often be chosen empirically for a particular dataset. In this problem, we look at what happens when we choose our regularization factor poorly.

For the following, recall that the loss function to be optimized under ridge regression is

$$E_R = \sum_{i=1}^{n} (y_i - (\hat{w}_0 + x^{(j)}\hat{w}))^2 + \lambda \|\hat{w}\|^2_2$$

There are faster algorithms out there but for simplicity we’ll assume that we are using the naive $O(k^3)$ algorithm.
where
\[\lambda \| \hat{w} \|^2_2 = \lambda \sum_{i=1}^{d} (\hat{w}_i)^2 \]

(1)

and \(\lambda \) is our regularization constant.

The loss function to be optimized under LASSO regression is
\[E_L = \sum_{i=1}^{n} (y_i - (\hat{w}_0 + x^{(j)} \hat{w}))^2 + \lambda \| \hat{w} \|_1 \]

where
\[\lambda \| \hat{w} \|_1 = \lambda \sum_{i=1}^{d} |\hat{w}_i| \]

(2)

1. (5 points) Discuss briefly how choosing too small a \(\lambda \) affects the magnitude of the following quantities. Please describe the effects for both ridge and LASSO, or state why the effects will be the same.
 (a) The error on the training set.
 (b) The error on the testing set.
 (c) The elements of \(\hat{w} \).
 (d) The number of nonzero elements of \(\hat{w} \).

2. (5 points) Now discuss briefly how choosing too large a \(\lambda \) affects the magnitude of the same quantities in the previous question. Again describe the effects for both ridge and LASSO, or state why the effects will be the same.

5 Regression and Agnostic Learning [20 points]

5.1 Bayes Optimal Prediction

Suppose we have a distribution over pairs \((X,Y)\) where \(Y\) is a scalar. Here, \(X\) lives in an arbitrary set \(\mathcal{X}\) (\(X\) need not be a vector). The square loss for a function \(f: \mathcal{X} \to \mathbb{R}\) can be defined as:
\[L(f) = \mathbb{E}_{X,Y}[(Y - f(X))^2] \]

where the expectation is with respect to the underlying distribution on \((X,Y)\).

1. (5 points) Show that:
\[L(f) = \mathbb{E}_X[(E[Y|X] - f(X))^2] + \mathbb{E}_{X,Y}[(Y - E[Y|X])^2] \]

where \(E[Y|X]\) is the conditional expectation of \(Y\) given \(X\). Show your steps and take care are in using conditional expectations.

2. (3 points) The Bayes optimal regressor \(f_{\text{Bayes}}\) is the function which minimizes \(L(f)\) over the class of all functions. Provide a natural expression for \(f_{\text{Bayes}}\), and write down \(L(f_{\text{Bayes}})\).
5.2 Bias-Variance-Noise Error Decomposition

Given a training set \(T = \{ (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \} \) sampled from this underlying distribution, the problem of regression refers to estimating a function \(\hat{f} \) which minimizes the square loss. Importantly, note that the function \(\hat{f} \) depends on \(T \) (where \(T \) is randomly sampled).

Now let suppose we have a class of functions \(F = \{ f \} \) (e.g. the class of linear functions, the class of neural networks, the class of decision trees,...). Suppose that the estimator we provide, using \(T \), lives in this class, i.e. \(\hat{f} \in F \). For example, we could use the empirical risk minimizer (ERM), which is defined as:

\[
\hat{f} = \arg \min_{f \in F} \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2
\]

(i.e. the ERM minimizes the square loss on the training set). More generally, this problem considers any estimation procedure restricted to provide an estimate in \(F \), i.e. \(\hat{f} \in F \).

The “best in class” function \(f^* \) is:

\[
f^* = \arg \min_{f \in F} L(f).
\]

Note that \(L(f^*) \) is the best loss we could hope to achieve using functions in \(F \).

1. (5 points) Let \(\bar{f}(X) = E_T[\hat{f}(X)] \) where the expectation is taken with respect the randomness in our training set, i.e. \(\bar{f}(\cdot) \) is the expected function with respect to the randomness in our training set. Note that \(E_T L(\hat{f}) \) is the expected square loss of our estimation procedure, where the expectation is with respect to our training set.

Show that:

\[
E_T L(\hat{f}) = E_T E_{X,Y}[(Y - \hat{f}(X))^2] = E_T [E_X[(\bar{f}(X) - \hat{f}(X))^2] + E_X[(\bar{f}(X) - E[Y|X])^2] + E_{X,Y}[(Y - E[Y|X])^2]
\]

(the first equality simply follows by definition). Note that the expectations in the above terms are with respect to different quantities. Again, show your steps and take care in manipulating conditional expectations.

2. (3 points) Interpret these terms as the variance, the bias, and the noise, respectively.

3. (1 points) For the ERM, is it the case that \(f^* = \bar{f} \)?

4. (3 points) Suppose that \(F \) is finite. For the ERM, in the limit of a large sample size \(N \), what do we you think \(\bar{f} \) and \(\hat{f} \) tend to? Why? (Hint: note that \(\hat{f} \) is determined by the training set \(T \), which is random. Formally, we are asking if \(\hat{f} \) converges to some function, with probability that tends to 1, and, if so, what is this function?)

6 Programming Question 1: Classification using Least Squares [10 points]

Obtain the MNist dataset from http://yann.lecun.com/exdb/mnist/

6.1 Binary Classification with Regression

In binary classification, we restrict \(Y \) to take on only two values. Suppose \(Y \in 0, 1 \). Now let us use least squares linear regression for classification. Let us consider the classification problem of recognizing if a digit
is 2 or not using linear regression. Here, let $Y = 1$ for all the 2’s digits in the training set, and use $Y = 0$ for all other digits.

Build a linear classifier by minimizing:

$$
\min_w \frac{1}{N} \sum_{i=1}^{N} (y_i - w \cdot x_i)^2 + \lambda \|w\|^2
$$

using the training set training set $\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$. Use appropriate regularization as needed. Let x_i be a vector of the pixel values of the image.

For the purpose of classification, we can label a digit as a 2 if $w \cdot x$ is larger than some threshold.

1. (4 points) Based on your training set, choose a reasonable threshold for classification. What is your 0/1 loss on the training set? What is your square loss on the training set?

2. (4 points) On the test set, what is your 0/1 loss? What is your square loss?

3. (1 point) Why might linear regression be a poor idea for classification?

4. (1 point) Recall your answer for what the Bayes optimal predictor is for the square loss. What is the Bayes optimal predictor using the square loss for classification? State your answer in a natural form, in terms of a probability.

7 Programming Question 2: Lasso [40 points]

The Lasso is the problem of solving

$$
\arg\min_{w, w_0} \sum_i (X_i w + w_0 - y_i)^2 + \lambda \sum_j |w_j|
$$

Here X is an $N \times d$ matrix of data, and X_i is the i-th row of the matrix. y is an $N \times 1$ vector of response variables, w is a d dimensional weight vector, w_0 is a scalar offset term, and λ is a regularization tuning parameter. For the programming part of this homework, you are required to implement the coordinate descent method that can solve the Lasso problem.

This question contains three parts, 1) analyze and optimize the time complexity 2) test your code using toy examples 3) try your code on a real world dataset. The first part involves no programming, but is crucial for writing an efficient algorithm.

7.1 Time complexity and making your code fast [14 points]

In class, you derived the update rules for coordinate descent, which is shown in Algorithm 1 (including the update term for w_0). In this part of question, we will analyze the algorithm and discuss how to make it fast. There are two key points: utilizing sparsity and caching your predictions. Assume we are using a sparse matrix representation, so that a dot product takes time proportional to the number of non-zero entries. In the following questions, your answers should take advantage of the sparsity of X when possible.

1. (1 point) Define $\hat{y}_i = X_i w + w_0$. Simplify the update rules for w_0 and the computation for c_k in Algorithm 1 using \hat{y}. (Hint, there should no longer be a sum over j).

2. (1 point) Let $\|X\|_0$ be the number of nonzero entries in X. What is the time complexity to compute \hat{y}?
Algorithm 1: Coordinate Descent Algorithm for Lasso

while not converged do
 $w_0 \leftarrow \frac{1}{N} \sum_{i=1}^{N} (y_i - \sum_j w_j x_{ij})$
 for $k \in \{1, 2, \ldots, d\}$ do
 $a_k \leftarrow 2 \sum_{i=1}^{N} x_{ik}^2$
 $c_k \leftarrow 2 \sum_{i=1}^{N} x_{ik} (y_i - (w_0 + \sum_{j \neq k} w_j x_{ij}))$
 $w_k \leftarrow \begin{cases}
 (c_k + \lambda) / a_k & c_k < -\lambda \\
 0 & c_k \in [-\lambda, \lambda] \\
 (c_k - \lambda) / a_k & c > \lambda
 \end{cases}$
 end
end

Algorithm 2: Efficient Coordinate Descent Algorithm

while not converged do
 $\hat{y} \leftarrow Xw + w_0$ (re-calculate \hat{y} each iteration to avoid numerical drift)
 apply update rule of w_0 you derived in Problem 7.1 Q1
 update \hat{y} using results in Problem 7.1 Q5
 for $k \in \{1, 2, \ldots, d\}$ do
 apply update rule of w_k you derived in Problem 7.1 Q1
 update \hat{y} using results in Problem 7.1 Q6
 end
end

3. (1 point) What is the time complexity to update w_0 when \hat{y} is not already computed? What if \hat{y} is already computed? (assume you can access \hat{y} with no extra cost)

4. (1 point) Let $z_j = \sum_i I(x_{ij} \neq 0)$ be the number of nonzero elements in j-th column of X. What is the time complexity to update w_j when \hat{y} is already computed?

5. (2 points) Let $\hat{y}_i^{(t)} = X_i w^{(t)} + w_0^{(t)}$, and assume we update $w_0^{(t)}$ to $w_0^{(t+1)}$ using the rule above. Let $\hat{y}_i^{(t+1)} = X_i w^{(t+1)} + w_0^{(t+1)}$ be the new prediction after updating. Express $\hat{y}_i^{(t+1)}$ in terms of $\hat{y}_i^{(t)}$. What is the complexity to calculate $\hat{y}_i^{(t+1)}$ when $\hat{y}_i^{(t)}$ is already computed?

6. (2 points) Let $\hat{y}_i^{(t)} = X_i w^{(t)} + w_0^{(t)}$, and assume we update $w_k^{(t)}$ to $w_k^{(t+1)}$ using the rule above. Let $\hat{y}_i^{(t+1)} = \sum_{j \neq k} w_j^{(t)} x_{ij} + w_k^{(t+1)} x_{ik} + w_0^{(t)}$ be the new prediction after updating. Express $\hat{y}_i^{(t+1)}$ in terms of $\hat{y}_i^{(t)}$. What is the complexity to calculate $\hat{y}_i^{(t+1)}$, when $\hat{y}_i^{(t)}$ is already computed?

7. (2 points) Putting this all together, you get the efficient coordinate descent algorithm in Algorithm 2. What is per iteration complexity of this algorithm (cost of each round of the while loop)?

7.2 Implement coordinate descent to solve the Lasso

Now we are ready to implement the coordinate descent algorithm in Algorithm 2. Your code must

- Include an offset term w_0 that is not regularized
- Take optional initial conditions for w and w_0
- Be able to handle sparse X. It is ok for your code not being able to handle dense X. In Python, this means you can always assume input is `scipy.sparse.csc_matrix`.

7
• Avoid unnecessary computation (i.e. take advantage of what you learned from Problem 7.1)

You may use any language for your implementation, but we recommend Python. Python is a very useful language, and you should find that Python achieves reasonable enough performance for this problem. You may use common computing packages (such as NumPy or SciPy), but please, do not use an existing Lasso solver.

Before you get started, here are some hints that you may find helpful:

• With the exception of computing objective values or initial conditions, the only matrix operations required are adding vectors, multiplying a vector by a scalar, and computing the dot product between two vectors. Try to use as much vector/matrix computation as possible.

• The most important check is to ensure the objective value is nonincreasing with each step.

• To ensure that a solution \((\hat{\mathbf{w}}, \hat{w}_0)\) is correct, you also can compute the value

\[
2 \mathbf{X}^T (\mathbf{X} \hat{\mathbf{w}} + \hat{w}_0 - \mathbf{y})
\]

This is a \(d\)-dimensional vector that should take the value \(-\lambda \text{sign}(\hat{w}_j)\) at \(j\) for each \(\hat{w}_j\) that is nonzero. For the zero indices of \(\hat{w}\), this vector should take values lesser in magnitude than \(\lambda\). (This is similar to setting the gradient to zero, though more complicated because the objective function is not differentiable.)

• It is up to you to decide on a suitable stopping condition. A common criteria is to stop when no element of \(\mathbf{w}\) changes by more than some small \(\delta\) during an iteration. If you need your algorithm to run faster, an easy place to start is to loosen this condition.

• For several problems, you will need to solve the Lasso on the same dataset for many values of \(\lambda\). This is called a regularization path. One way to do this efficiently is to start at a large \(\lambda\), and then for each consecutive solution, initialize the algorithm with the previous solution, decreasing \(\lambda\) by a constant ratio until finished.

• The smallest value of \(\lambda\) for which the solution \(\hat{\mathbf{w}}\) is entirely zero is given by

\[
\lambda_{\text{max}} = 2 \| \mathbf{X}^T (\mathbf{y} - \bar{\mathbf{y}}) \|_{\infty}
\]

This is helpful for choosing the first \(\lambda\) in a regularization path.

Finally here are some pointers toward useful parts of Python:

• numpy, scipy.sparse, and matplotlib are useful computation packages.

• For storing sparse matrices, the scipy.sparse.csc_matrix (compressed sparse column) format is fast for column operations.

• Important note for numpy users, scipy.sparse.csc_matrix uses matrix semantics instead of numpy.ndarray. Please refer to http://wiki.scipy.org/NumPy_for_Matlab_Users for difference between numpy matrix and ndarray. Specifically, the * operation is matrix multiplication instead of the elementwise product.

• See the short note on scipy.sparse.csc_matrix in guide_csc_matrix.py to walk you through the necessary features you need.

• scipy.io.mmread reads sparse matrices in Matrix Market Format.

• numpy.random.randn is nice for generating random Gaussian arrays.

• numpy.linalg.lstsq works for solving unregularized least squares.

• If you’re new to Python but experienced with Matlab, consider reading NumPy for Matlab Users at http://wiki.scipy.org/NumPy_for_Matlab_Users.
7.3 Try out your work on synthetic data [10 points]

We will now try out your solver with some synthetic data. A benefit of the Lasso is that if we believe
many features are irrelevant for predicting \(y \), the Lasso can be used to enforce a sparse solution, effectively
differentiating between the relevant and irrelevant features.

Let’s see if it actually works. Suppose that \(x \in \mathbb{R}^d \), \(y \in \mathbb{R} \), \(k < d \), and pairs of data \((x_i, y_i)\) are generated
independently according to the model

\[
y_i = w_0^* + w_1^* x_{i,1} + w_2^* x_{i,2} + \ldots + w_k^* x_{i,k} + \epsilon_i
\]

where \(\epsilon_i \sim \mathcal{N}(0, \sigma^2) \) is some Gaussian noise. Note that since \(k < d \), the features \(k + 1 \) through \(d \) are
unnecessary (and potentially even harmful) for predicting \(y \).

With this model in mind, you are now tasked with the following:

1. (5 points) Let \(N = 50, d = 75, k = 5 \), and \(\sigma = 1 \). Generate some data by drawing each element of
 \(X \in \mathbb{R}^{N \times d} \) from a standard normal distribution \(\mathcal{N}(0,1) \). Let \(w_0^* = 0 \) and create a \(w^* \) by setting the
 first \(k \) elements to \(\pm 10 \) (choose any sign pattern) and the remaining elements to 0. Finally, generate
 a Gaussian noise vector \(\epsilon \) with variance \(\sigma^2 \) and form \(y = Xw^* + w_0^* + \epsilon \).

With your synthetic data, solve multiple Lasso problems on a regularization path, starting at \(\lambda_{\text{max}} \) and
decreasing \(\lambda \) by a constant ratio until few features are chosen correctly. Compare the sparsity pattern
of your Lasso solution \(\hat{w} \) to that of the true model parameters \(w^* \). Record values for precision (number
of correct nonzeros in \(\hat{w} \)/total number of nonzeros in \(\hat{w} \)) and recall (number of correct nonzeros in
\(\hat{w} \))/\(k \)).

How well are you able to discover the true nonzeros? Comment on how \(\lambda \) affects these results and
include plots of precision and recall vs. \(\lambda \).

2. (5 points) Change \(\sigma \) to 10, regenerate the data, and solve the Lasso problem using a value of \(\lambda \) that
 worked well when \(\sigma = 1 \). How are precision and recall affected? How might you change \(\lambda \) in order to
 achieve better precision or recall?

7.4 Become a data scientist at Yelp [20 points]

We’ll now put the Lasso to work on some real data. Recently Yelp held a recruiting competition on the
analytics website Kaggle. Check it out at http://www.kaggle.com/c/yelp-recruiting (As a side note,
browsing other competitions on the site may also give you some ideas for class projects.)

For this competition, the task is to predict the number of useful upvotes a particular review will receive. For
extra fun, we will add the additional task of predicting the review’s number of stars based on the review’s
text alone.

For many Kaggle competitions (and machine learning methods in general), one of the most important
requirements for doing well is the ability to discover great features. We can use our Lasso solver for this as
follows. First, generate a large amount of features from the data, even if many of them are likely unnecessary.
Afterward, use the Lasso to reduce the number of features to a more reasonable amount.

Yelp provides a variety of data, such as the review’s text, date, and restaurant, as well as data pertaining to
each business, user, and check-ins. This information has already been preprocessed for you into the following
files:
For each task, data files contain data matrices, while labels are stored in separate text files. The first data matrix is stored in CSV format, each row corresponding to one review. The second data matrix is stored in Matrix Market Format, a format for sparse matrices. Meta information for each feature is provided in the final text files, one feature per line. For the upvote task, these are functions of various data attributes. For the stars task, these are strings of one, two, or three words (n-grams). The feature values correspond roughly to how often each word appears in the review. All columns have also been normalized.

To get you started, the Python following code should load the data:

```python
import numpy as np
import scipy.io as io
import scipy.sparse as sparse

# Load a text file of integers:
y = np.loadtxt("upvote_labels.txt", dtype=np.int)

# Load a text file of strings:
featureNames = open("upvote_features.txt").read().splitlines()

# Load a csc of floats:
A = np.genfromtxt("upvote_data.csv", delimiter="").tocsc()

# Load a matrix market matrix, convert it to csc format:
B = io.mmread("star_data.mtx").tocsc()
```

For this part of the problem, you have the following tasks:

1. *(6 points)* Solve lasso to predict the number of useful votes a Yelp review will receive. Use the first 4000 samples for training, the next 1000 samples for validation, and the remaining samples for testing. Starting at λ_{max}, run Lasso on the training set, decreasing λ using previous solutions as initial conditions to each problem. Stop when you have considered enough λ’s that, based on validation error, you can choose a good solution with confidence (for instance, when validation error begins increasing or stops decreasing significant). At each solution, record the root-mean-squared-error (RMSE) on training and validation data. In addition, record the number of nonzeros in each solution. Plot the RMSE values together on a plot against λ. Separately plot the number of nonzeros as well.

2. *(2 points)* Find the λ that achieves best validation performance, and test your model on the remaining set of test data. What RMSE value do you obtain?

3. *(2 points)* Inspect your solution and take a look at the 10 features with weights largest in magnitude. List the names of these features and their weights, and comment on if the weights generally make sense intuitively.

4. *(10 points)* Repeat part 1, 2, 3 using the data matrix and labels for predicting the score of a review. Use the first 30,000 examples for training and divide the remaining samples between validation and testing as before.