
CSE 546: Machine Learning Lecture 10

Stochastic Gradient Descent

Instructor: Sham Kakade

1 Non-smooth optimization and (sub-)gradient descent

The the sub-gradient update rule is again:
wt+1 = wt − η∇G(wt)

where∇G(wt) is the sub-gradient at wt.

We say that ∇G(w) is a sub-gradient at w if it satisfies, for all w′, that:

G(w′) ≥ G(w) +∇G(w) · (w′ − w)

For non-differentiable convex functions, the sub-gradient is a natural concept to work with.

Theorem 1.1. (The non-smooth case) Suppose that for all w we have that:

‖∇G(w)‖ ≤ B

Also, suppose that we know a bound on our starting distance, i.e. ‖w0−w∗‖ ≤ R. Set η = R
B

√
2
T , then we have that:

G (wT )−G(w∗) ≤
RB√
T

where wT =
1

T

∑
t

wt

Proof. First, note that the We have that:

‖wt+1 − w∗‖2 = ‖wt −∇G(wt)− w∗‖2

= ‖wt − w∗‖2 − 2η∇G(wt) · (wt − w∗) + η2‖∇G(wt)‖2

≤ ‖wt − w∗‖2 − 2η∇G(wt) · (wt − w∗) + η2B2

using the definition of B.

Hence,

∇G(wt) · (wt − w∗) =
1

2η
‖wt − w∗‖2 − ‖wt+1 − w∗‖2 +

η

2
B2

and so:

1

T

T∑
t=1

∇G(wt) · (wt − w∗) =
1

2η

(
‖w1 − w∗‖2 − ‖wT+1 − w∗‖2

)
+
ηT

2
B2

≤ ‖w1 − w∗‖2

2η
+
ηT

2
B2

≤ RB√
T
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where the last step uses our choice of η.

The proof is completed since:

G

(
1

T

∑
t

wt

)
≤ 1

T

∑
t

G(wt) ≤
1

T

T∑
t=1

∇G(wt) · (wt − w∗)

where both steps follow from convexity.

2 Stochastic Gradient Descent

Suppose we want to minimize G(w), where G(w) is of the form:

G(w) =
1

n

∑
i

`((xi, yi), w)

We could use gradient descent. One practical difficulty is that computing the gradient itself can be costly, particularly
when n is large.

An alternative algorithm is stochastic gradient descent (SGD).

This algorithms is as follows.

1. Sample a point i at random

2. Update the parameter:
wt+1 = wt − ηt∇`((xi, yi), wt)

and return to step 1.

Note that, in expectation, we are moving in the direction of the gradient. Typically, with SGD, we have to take a
little care with the rate at which we decrease the learning rate to ensure convergence of the algorithm. If we decrease
the learning rate too quickly, we may not converge. If we decrease it too slowly, then we may be slowing down
convergence.

Theorem 2.1. (SGD) Suppose that for all (x, y) and w we have that:

‖∇`((x, y), w)‖ ≤ B

Also, suppose that we know a bound on our starting distance, i.e. ‖w0−w∗‖ ≤ R. Set η = R
B

√
2
T , then we have that:

E[G (wT )]−G(w∗) ≤
RB√
T

where wT =
1

T

∑
t

wt

where the expectation is over the random points (xi, yi) drawn in our algorithm.

Proof. Suppose that (xi, yi) are drawn at timestep t. Let us define sampled loss function at time t to be:

`t(w) = `((xi, yi), w)

where
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Just as in the non-smooth case, we have that:

‖wt+1 − w∗‖2 = ‖wt −∇`t(wt)− w∗‖2

= ‖wt − w∗‖2 − 2η∇`t(wt) · (wt − w∗) + η2‖∇`t(wt)‖2

≤ ‖wt − w∗‖2 − 2η∇`t(wt) · (wt − w∗) + η2B2

using the definition of B.

Due to the random sampling at time t (which is uncorrelated with the history of samples before time t), we have:

E[∇`t(wt)|history before t] = ∇G(wt)

By taking an expectation with respect to sample at time t, we have:

E[‖wt+1 − w∗‖2|history before t] ≤ ‖wt − w∗‖2 − 2η∇G(wt) · (wt − w∗) + η2B2

(here we condition on the history up to time t).

By taking unconditional expectations,

E∇G(wt) · (wt − w∗) ≤ E
1

2η
‖wt − w∗‖2]− E‖wt+1 − w∗‖2 +

η

2
B2

and so:

E
1

T

T∑
t=1

∇G(wt) · (wt − w∗) =
1

2η
E
(
‖w1 − w∗‖2 − ‖wT+1 − w∗‖2

)
+
ηT

2
B2

≤ ‖w1 − w∗‖2

2η
+
ηT

2
B2

≤ RB√
T

where the last step uses our choice of η.

The proof is completed using convexity.
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