
CSE 546: Machine Learning Lecture 3

Risk of Ridge Regression

Instructor: Sham Kakade

0.1 Analysis

Let us rotate each Xi by V >, i.e.
Xi ← V >Xi

where V is the right matrix of the SVD of the n × d matrix X (note this rotation does not alter the predictions of
rotationally invariant algorithms).

In this rotated, coordinate system, we have that:

Σ :=
1

n
X>X = diag(λ1, λ2, . . . λd)

and that:

[ŵλ]j =
1
n

∑n
i=1 Yi[Xi]j

λj + λ

It is straightforward to see that:
w∗ = E[ŵ0]

(where w∗ is the minimizer defined in the previous lecture). It follows that:

[E[ŵ]λ]j := E[ŵλ]j =
λj

λj + λ
(w∗)j

by just taking expectations.

Lemma 0.1. (Risk Bound) If Var(Yi) = σ2, we have that:

R(ŵλ) =
σ2

n

∑
j

(
λj

λj + λ
)2 +

∑
j

(w∗)
2
j

λj
(1 + λj/λ)2

The above is an equality if Var(Yi) ≤ σ2.

Proof. Note that in our coordinate system we have X = UD> (from the thin SVD), since X>X is diagonal. Here,
the diagonal entries are

√
nλj . Letting η be the noise:

Y = E[Y ] + η

and
Σλ = Σ + λI ,
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so that ŵλ = 1
nΣλX

>Y . We have that:

EY ‖ŵλ − E[ŵ]λ‖2Σ =
1

n2
Eη[η>XΣλΣΣλXη]

=
1

n2
Eη[η>UDiag(. . . ,

nλ2
j

(λj + λ)2
, . . .)U>η]

=
1

n

∑
j

λ2
j

(λj + λ)2
Eη[U>η]2j

=
σ2

n

∑
j

λ2
j

(λj + λ)2

This holds with equality if Var(Yi) = 1. For the bias term,

‖wλ − w∗‖2Σ =
∑
j

λj([wλ]j − [w∗]j)
2

=
∑
j

(w∗)
2
jλj(

λj
λj + λ

− 1)2

=
∑
j

(w∗)
2
jλj(

λ

λj + λ
)2

and the result follows from algebraic manipulations.

0.2 A (dimension-free) margin bound

There following bound characterizes the risk for two natural settings for λ.

Theorem 0.2. Assume the linear model is correct: Define d as:

d =
1

n

∑
i

‖Xi‖2

For λ =

√
d

‖w∗‖
√
n

, then:

R(ŵλ) ≤ ‖w∗‖
√
d√

n
≤ ‖w∗‖X+√

n

where X+ is a bound on the norm of ‖X‖i.

Conceptually, the second bound is ‘dimension free’, i.e. it does not depend explicitly on d, which could be infinite.
And we are effectively doing regression in a large (potentially) infinite dimensional space.

Proof. The λ = 0 case follows directly from the previous lemma. Using that (a + b)2 ≥ 2ab, we can bound the
variance term for general λ as follows:

1

n

∑
j

(
λj

λj + λ
)2 ≤ 1

n

∑
j

λ2
j

2λjλ
=

∑
j λj

2nλ

Again, using that (a+ b)2 ≥ 2ab, the bias term is bounded as:∑
j

(w∗)
2
j

λj
(1 + λj/λ)2

≤
∑
j

(w∗)
2
j

λj
2λj/λ

=
λ

2
||w∗||2
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So we have that:

R(ŵλ) ≤ ‖Σ‖trace

2nλ
+
λ

2
||w∗||2

and using the choice of λ completes the proof.
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