
CSE 546: Machine Learning Lecture 1

Overview / Maximum Likelihood Estimation

Instructor: Sham Kakade

1 What is Machine Learning?

Machine learning is the study of algorithms which improve their performance with experience. The area combines
ideas from both computer science and statistics (and numerous other areas) for the simple reason that statistics is the
means by which we model the natural world and computer science is the study of algorithms, which are relevant for
manipulating such models.

2 Maximum Likelihood Estimation

In many machine learning (and statistics) questions, we focus on estimating parameters of a model.

2.1 Estimating the bias of a coin

Let’s start by estimating the bias of a coin.

Suppose the probability of heads is θ∗ and the probability of tails is 1 − θ∗. The parameter θ∗ is often referred to as
the bias of the coin.

Suppose we observe some sequence of coin flips S. Suppose the flips are identically and independently distributed
(i.i.d.). The probability of observing a sequence of flips S is:

Pr(S|θ) = θNH (1− θ)NT

where NH and NT are the number of heads and tails, respectively, in the sequence.

The maximum likelihood estimator is the parameter which maximizes this function:

θ̂MLE = arg max
θ

Pr(S|θ) = arg max
θ

log Pr(S|θ)

where the last step follows since the log function is monotonically increasing.

For this particular case, we have that:

θ̂MLE = arg max
θ

log(θNH (1− θ)NT )

We can minimize by this function by finding the θ such that:

0 =
∂

∂θ
log(θNH (1− θ)NT ) =

NH
θ
− NT

1− θ
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Doing this, we find that:

θ̂ =
NH

NH +NT

Note that this estimator is unbiased in the following sense:

Eθ̂ = θ∗

where the expectation is over the sequence of coin flips.

2.2 Estimating a mean

Let us now consider the problem of estimating a mean. Suppose we have a distribution Pr(X), and we wish to estimate
the mean of this distribution. In particular, we observe data S = x1, x2, . . . xN . What is an estimate of the mean?

Now let us model the data under a normal distribution.

Pr(X) ∼ N(µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
Here, we have that the log likelihood function is:

log Pr(S|µ) =
∑
i

log Pr(X = xi) = −N log
√

2πσ2 −
N∑
i=1

(xi − µ)2

2σ2

Again, to find the maximum likelihood estimate, we simply find the maxima of this function. By doing this, we obtain
that the maximum likelihood estimator is:

µ̂ =
1

N

∑
i

xi

Note that that this estimate does not depend on knowledge of σ.

2.3 Maximum Likelihood Estimation: an optimization problem

More generally, suppose we have a probability model of our data Pr(S|θ).

If we view Pr(S|θ) as a function of θ (keeping S fixed), then this is referred to the likelihood function. We can define
the log likelihood function as:

LS(θ) = log Pr(S|θ)

Importantly, note that the functional dependence of the likelihood function is on θ (and S is considered fix).

The maximum likelihood estimator is the parameter which maximizes this function:

θ̂MLE = arg maxLS(θ)

When it is clear from context, we sometimes drop the MLE subscript, and refer to this estimate by θ̂.

Importantly, note that computing the MLE is an optimization problem. If we know that the θ lies in some set Θ, then
we solve the problem:

θ̂MLE = arg max
θ∈Θ

LS(θ)

which is a constrained optimization problem.

2



Why is this idea appealing? In general, we want an estimate θ̂ which is accurate in some quantifiable sense. Let us see
make a crude (and asymptotic) justification of this idea.

Suppose our model posits that our data {z1, . . . zN} are i.i.d. And let us suppose that our data are in fact generated by
some log Pr(z|θ∗) for some θ∗ in our model class.

We have that:

θ̂MLE,N = arg max
θ∈Θ

1

N

N∑
i=1

log Pr(zi|θ)

Now for large enough N , we may hope that this function well approximates the expected log likelihood function:

E log Pr(z|θ)

where the expectation is over the random variable z.

Now let us consider the following optimization problem:

arg max
θ

E log Pr(z|θ)

Under our assumption that the data are generating according to θ∗, one can show that θ∗ is a maximizer of the above
(through a convexity argument). To see this, note that since the log is a concave function, we have that:

E log Pr(z|θ∗)− E log Pr(z|θ) =− E log
Pr(z|θ)
Pr(z|θ∗)

≥− logE
Pr(z|θ)
Pr(z|θ∗)

=− log
∑
z

Pr(z|θ∗)
Pr(z|θ)
Pr(z|θ∗)

=− log
∑
z

Pr(z|θ)

=− log 1

=0

The

Furthermore, under mild regularity conditions, for sufficiently large N , we have that θ̂MLE,N converges to θ∗, i.e. it is
consistent. In particular, any estimation procedure (one which provides an estimate θ̂N given N samples of the data)
is said to be consistent if θ̂N converges to the θ∗. Furthermore, in many cases, the MLE is statistically efficient. In
particular, in many cases, it is the case that, in the limit of large enough N , no other (unbiased) estimator has lower
variance.

3 How good are these estimates?

Now what are the quality of these estimates? Note that even if our Gaussian assumption is not correct (sometimes
referred to as model misspecification, we might still expect that our estimates be reasonable.

3.1 Review: the central limit theorem

Theorem 3.1. Suppose X1, X2, . . . Xn is a sequence of independent, identically distributed (i.i.d.) random variables
with mean µ and variance σ2. Let X̄n =

∑n
i=1Xi. Under certain mild conditions (in particular, suppose that the
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moment generating function MX(λ) exists for all λ in a neighborhood of 0), we what that for all z,

lim
n→∞

Pr

(
X̄n − µ
σ/
√
n
≤ z
)

= Φ(z)

where Φ(·) is the standard normal CDF.

Roughly speaking, this says that, in the limit of large n, X̄n is distributed according to a Gaussian with mean µ and
variance σ2/n

3.2 Probability Approximately Correct (PAC) statements

Theorem 3.2. (Chernoff-Hoeffding Bound ) Let X1, X2, . . . XN be N i.i.d. random variables with Xi ∈ [a, b] (with
probability one). Then for all ε > 0 we have:

Pr(
1

N

m∑
i=1

Xi − E [X] > ε) ≤ e−
2Nε2

(b−a)2

Suppose that for the mean estimation case considered earlier, that our random variable X is bounded in [0, 1] with
probability 1. Then we have that with probability greater than 1− δ,

|θ̂ − E[X]| ≤
√

log /2δ2N

To see this note that:

Pr(|θ̂ − E[X]| ≥ ε) ≤ Pr(
1

N

∑
Xi − E [X] > ε) + Pr(

1

N

∑
Xi − E [X] < −ε) ≤ 2e

− 2Nε2

(b−a)2

And choosing ε =
√

log /2δ2N completes the argument.

3.3 Bernstein bound

With stronger concentration bounds (such as the Bernstein bound), one can show that with probability greater than
1− δ,

1

N

m∑
i=1

Xi − E [X] ≤
√

2Var(X) log 1/δ

N
+

2B log(1/δ)

N

where Var(X) is the variance of X and B is an upper bound on X .

4 The Basic Idea

• collect some data...

• choose a hypothesis class or model

• choose a loss function (the log loss was what we used in this lecture)

• choose an optimization method to minimize the loss
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