
CSE 546: Machine Learning Lecture 1

The Central Limit Theorem

Instructor: Sham Kakade

1 The Central Limit Theorem

While true under more general conditions, the following is a rather simple proof of the central limit theorem. This
proof provides some insight into our theory of large deviations (e.g. how far away a random variable is form its mean).

Recall that MX(λ) = EeλX is the moment generating function of a random variable X .

Theorem 1.1. Suppose X1, X2, . . . Xn is a sequence of independent, identically distributed (i.i.d.) random vari-
ables with mean µ and variance σ2. Suppose that the MX(λ) exists for all λ in a neighborhood of 0. Let X̄n =
n−1

∑n
i=1Xi. Then for all x,
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where Φ(·) is the standard normal CDF.

Roughly, this says that, as n→∞, X̄n is distributed according to a Gaussian with mean µ and variance σ2/n.

Proof. Without loss of generality, assume µ = 0. Define Z̄n = X̄n
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. By independence and properties of
the MGF, we have:
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where we have used independence of Xi in the first step.

As the moment generating function exists around 0 (and the derivatives of the moment generating function are the
moments), Taylor’s theorem implies:

MX(s) = MX(0) +M ′X(0)s+
1

2
M ′′X(0)s2 +

1

3!
M ′′′X (0)s3 . . .

= 1 + 0 +
1

2
M ′′X(0)s2 + o(s2)

where a function g(s) = o(s2) if g(s)/s2 → 0 as s→ 0. Hence,
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where the last term is with respect to n→∞. Hence,

MZ̄n(λ) =
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)n
→ exp(
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2
)

Thus the limiting moment generating function of Z̄n is identical to that of a standard normal (in a neighborhood of 0
for λ). This proves they have identical CDFs (using properties of the MGF).
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