
CSE 546 Machine Learning, Autumn 2015

Homework 4

Due: Friday, December 11, by 10:30am

1 PCA via Successive Deflation [30 points]

(Adapted from Murphy Exercise 12.7)

Suppose we have a set of n datapoints x1, . . . , xn, where each xi is represented as a d-dimensional column
vector.

Let X = [x1; . . . ;xn] be the (d× n) matrix where column i is equal to xi. Define C = 1
nXXT to be the

covariance matrix of X, where Cij =
∑

n XinXjn = covar(i, j).
Next, order the eigenvectors of C by their eigenvalues (largest first), and let v1, v2, . . . vk be the first k

eigenvectors. These satisfy

vTj vk =

{
0 if j 6= k

1 if j = k

v1 is the first principal eigenvector of C (the eigenvector with the largest eigenvalue), and as such satisfies
Cv1 = λ1v1. Now define x̃i as the orthogonal projection of xi onto the space orthogonal to v1:

x̃i = (I− v1vT1 )xi

Finally, define X̃ = [x̃1; . . . ; x̃n] as the deflated matrix of rankd d− 1, which is obtained by removing
from the d-dimensional data the component that lies in the direction of the first principal eigenvector:

X̃ = (I− v1vT1 )X

1. [8 points] Show that the covariance of the deflated matrix,

C̃ =
1

n
X̃X̃T

is given by

C̃ =
1

n
XXT − λ1v1vT1

(Hint: Some useful facts: (I − v1vT1 ) is symmetric, XXT v1 = nλ1v1, and v
T
1 v1 = 1. Also, for any

matrices A and B, (AB)T = BTAT .)
2. [8 points] Show that for j 6= 1, if vj is a principal eigenvector of C with corresponding eigenvalue λj

(that is, Cvj = λjvj), then vj is also a principal eigenvector of C̃ with the same eigenvalue λj .

3. [6 points] Let u be the first principal eigenvector of C̃. Explain why u = v2. (You may assume u is
unit norm.)

4. [8 points] Suppose we have a simple method f for finding the leading eigenvector and eigenvalue of
a positive-definite matrix, denoted by [λ, u] = f(C). Write some pseudocode for finding the first K
principal basis vectors of X that only uses the special f function and simple vector arithmetic.

(Hint: This should be a simple iterative routine that takes only a few lines to write. The input is C,K,
and the function f , the output should be vj and λj for j ∈ [1 : K].)
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2 Manual calculation of one round of EM for a GMM [30 points]

(Extended version of: Murphy Exercise 11.7) In this question we consider clustering 1D data with a mixture
of 2 Gaussians using the EM algorithm. You are given the 1-D data points x = [1 10 20].

M step

Suppose the output of the E step is the following matrix:

R =

 1 0
0.4 0.6
0 1


where entry Ri,c is the probability of observation xi belonging to cluster c (the responsibility of cluster

c for data point i). You just have to compute the M step. You may state the equations for maximum
likelihood estimates of these quantities (which you should know) without proof; you just have to apply the
equations to this data set. You may leave your answer in fractional form. Show your work.

1. [3 points] Write down the likelihood function you are trying to optimize.
2. [6 points] After performing the M step for the mixing weights π1, π2, what are the new values?
3. [6 points] After performing the M step for the means µ1 and µ2, what are the new values?
4. [6 points] After performing the M step for the standard deviations σ1 and σ2, what are the new values?

E step

Now suppose the output of the M step is the answer to the previous section. You will compute the subsequent
E step.

1. [3 points] Write down the formula for the probability of observation xi belonging to cluster c.
2. [6 points] After performing the E step, what is the new value of R?
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3 Programming Question (clustering with K-means) [40 points]

In class we discussed the K-means clustering algorithm. Your programming assignment this week is to
implement the K-means algorithm on digit data.

3.1 The Data

There are two files with the data. The first digit.txt contains the 1000 observations of 157 pixels (a subset
of the original 785) from images containing handwritten digits. The second file labels.txt contains the
true digit label (either 1, 3, 5, or 7 ). You can read both data files in with

X = genfromtxt(‘digit.txt’)

Y = genfromtxt(‘labels.txt’, dtype=int)

Please note that there aren’t IDs for the digits. Please assume the first line is ID 0, the second line is ID
1, and so on. The labels correspond to the digit file, so the first line of labels.txt is the label for the digit in
the first line of digit.txt.

3.2 The algorithm

Your algorithm should be implemented as follows:

1. Select k starting centers that are points from your data set. You should be able to select these centers
randomly or have them given as a parameter.

2. Assign each data point to the cluster associated with the nearest of the k center points.
3. Re-calculate the centers as the mean vector of each cluster from (2).
4. Repeat steps (2) and (3) until convergence or iteration limit.

Define convergence as no change in label assignment from one step to another or you have iterated 20
times (whichever comes first). Please count your iterations as follows: after 20 iterations, you should have
assigned the points 20 times.

3.3 Within group sum of squares

The goal of clustering can be thought of as minimizing the variation within groups and consequently maxi-
mizing the variation between groups. A good model has low sum of squares within each group.

We define sum of squares in the traditional way. Let Ck be the kth cluster and let µk be the empirical
mean of the observations xi in cluster Ck. Then the within group sum of squares for cluster Ck is defined
as:

SS(k) =
∑
i∈Ck

|xi − µCk
|2

Please note that the term |xi − µCk
| is the euclidean distance between xi and µCk

, and therefore should

be calculated as |xi − µCk
| =

√∑d
j=1 (xij − µCkj

)2, where d is the number of dimensions. Please note that

that term is squared in SS(k).
If there are K clusters total then the “sum of within group sum of squares” is just the sum of all K of

these individual SS(k) terms.

3.4 Mistake Rate

Given that we know the actual assignment labels for each data point we can attempt to analyze how well
the clustering recovered this. For cluster Ck let its assignment be whatever the majority vote is for that
cluster. If there is a tie, just choose the digit that is smaller numerically as the majority vote.

For example if for one cluster we had 270 observations labeled one, 50 labeled three, 9 labeled five, and
0 labeled seven then that cluster will be assigned value one and had 50 + 9 + 0 = 59 mistakes. If we add
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up the total number of “mistakes” for each cluster and divide by the total number of observations (1000) we
will get our total mistake rate, between 0 and 1.

3.5 Questions

When you have implemented the algorithm please report the following:

1. [10pts] The values of sum of within group sum of squares and mistake rates for k = 2, k = 4 and k = 6.
Please start your centers with the first k points in the dataset. So, if k = 2, your initial centroids will
be ID 0 and ID 1, which correspond to the first two lines in the file.

2. [6pts] The number of iterations that k-means ran for k = 6, starting the centers as in the previous
item. Make sure you count the iterations correctly. If you start with iteration i = 0 and at i = 3 the
cluster assignments don’t change, the number of iterations was 4, as you had to do step 2 four times
to figure this out.

3. [12pts] A plot of the sum of within group sum of squares versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Please
start your centers randomly (choose k points from the dataset at random).

4. [12pts] A plot of total mistake rate versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Please start your centers
randomly (choose k points from the dataset at random).

For the last two items, you should generate these graphs a few times in case you get unlucky centers in
the beginning, but please submit only one plot.
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4 Extra Credit: Neural Nets and Backprop [100 points]

Now we will implement the back-propagation algorithm for neural nets on the full MNIST dataset, available
at http://yann.lecun.com/exdb/mnist/. Use the square loss for the loss function at the top layer. Also,
please submit your code. It might be helpful to project your data down to 50 dimensions with PCA.

1. [20 points] Train a 2-layer neural network with either stochastic or batch gradient descent (a 2-layer
network has one hidden layer). Convince yourself that your implementation is correct (e.g. check that
your squared training error is decreasing. Even for SGD, this should occur on average). Obtain below
10% classification error (on either the training or test set).

2. [20 points] Obtain less than 4% error with a two layer neural network. About 400 hidden nodes should
suffice.

3. [30 points] Obtain less than 2% error with a two layer neural network. Use a sufficiently wide network,
and specify how many nodes you used.

4. [30 points] Train a three layer network and obtain test error less than 2% error. Specify your network
architecture.
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