
CSE 546 Machine Learning, Autumn 2013

Homework 2

Due: Tuesday, Nov 3, beginning of class

1 Regression and feature selection [20 Points]

Let us do regression on synthetic data (where you generate the data). Throughout make
sure to use a number of dimensions d ≥ 50.

1. (10 points) Generate data where yi = w>∗ xi + η where η is some noise model. Make
sure that w∗ is non-zero in all directions. Fit this model (for a few different sample
sizes) and show how your parameter error, say measured under ‖w∗ − ŵ‖22, decreases
with the sample size n. Also, comment on how your parameter error decreases with
n. (Consider generating the vectors x1, . . . xn, from a Gaussian distribution).

2. (10 points) Now do the same where you make it so that only one coordinate of w∗ is
nonzero. Do the subset selection algorithm on your dataset for some different values
of n. Also do the linear regression algorithm for different values of n. Comment on
how they behave differently.

2 Programming Question [45 Points]

In this problem, you will train a logistic regression model to predict the Click Through
Rate (CTR) on a dataset with about 10,000 examples. The CTR provides a measure of the
popularity of an advertisement, and the features we will use for prediction include attributes
of the ad and the user.

2.1 Unprocessed Dataset

The dataset we will consider comes from the 2012 KDD Cup Track 2. Here, a user types a
query and a set of ads are displayed and we observe which ad was clicked.

For example:

1. Alice went to the famous search engine Elgoog, and typed the query “big data”.

2. Besides the search result, Elgoog displayed 3 ads each with some short text including
its title, description, etc.

3. Alice then clicked on the first advertisement

1

This completes a SESSION. At the end of this session Elgoog logged 3 records:

Clicked = 1 | Depth = 3 | Position = 1 | Alice | Text of Ad1 |
Clicked = 0 | Depth = 3 | Position = 2 | Alice | Text of Ad2 |
Clicked = 0 | Depth = 3 | Position = 3 | Alice | Text of Ad3 |

In addition, the log contains information about Alice’s age and gender. Here is the for-
mat of a complete row of our training data:

Clicked | Depth | Position | Userid | Gender | Age | Text Tokens of Ad

Let’s go through each field in detail:

• “Clicked” is either 0 or 1, indicating whether the ad is clicked.

• “Depth” takes a value in {1, 2, ..., } specifying the number of ads displayed in the
session.

• “Position” takes a value in {1, 2, ..., Depth} specifying the rank of the ad among all
the ads displayed in the session.

• “Userid” is an integer id of the user.

• “Age” takes a value in {1, 2, 3, 4, 5, 6}, indicating different ranges of a user’s age: ‘’1’
for (0, 12], ‘2’ for (12, 18], ‘3’ for (18, 24], ‘4’ for (24, 30], ‘5’ for (30, 40], and ‘6’ for
greater than 40.

• “Gender” takes a value in {−1, 1}, where -1 stands for male and 1 stands for female.

• “Text Tokens” is a comma separated list of token ids. For example: “15,251,599”
means “token 15”, “token 251”, and “token 599”. (Note that due to privacy issues, the
mapping from token ids to words is not revealed to us in this dataset, e.g., “token 32”
to “big”.)

Here is an example that illustrates the concept of features “Depth” and “Position”.
Suppose the list below was returned by Elgoog as a response to Alice’s query. The list has
depth = 3. “Big Data” has position = 1, “Machine Learning” has position = 2 and so
forth.

Big Data
Machine Learning
Cloud Computing

Here is a sample from the training data:
0 | 2 | 2 | 280151 | 1 | 2 | 0, 1, 154, 173, 183, 188, 214, 234, 26, 3, 32, 36, 37, 4503, 51, 679, 7740, 8, 94
The test data is in the same format except that each instance does not have the first

label field, which is stored in a separate file named “test label.txt”. Some data points do
not have user information. In these cases, the userid, age, and gender are set to zero.

2

2.2 Processed Dataset (that you will use...)

In class, we simply denote

xt = [xt1, ..., x
t
d] (1)

as an abstract feature vector. In the real world, however, constructing the feature vector
requires some thought. We have preprocessed the dataset for you, making the following
modifications.

• First of all, not everything in the data should be treated as a feature. In this dataset,
“Userid” should not be treated as a feature. We have removed this column from the
dataset for you.

• Similarly, we cannot directly use the list of token ids as features in Equation 1 since
the numbers are arbitrarily assigned and thus meaningless for the purposes of regres-
sion. Instead, we should think of the list of token ids L = [l1, l2, l3, ...] as a compact
representation of a sparse binary vector b where b[i] = 1∀i ∈ L. We have replaced the
list of words with a list of binary variables indicating token presence.

• As for the rest of the features: “Depth”, “Position”, “Age”, and ‘Gender”, they are
scalar variables, so we maintain their original values in the dataset.

The dataset that we are giving you has the following form:
Clicked, Depth, Position, Gender, Age, Word1, Word2, Word3, Word4, ..., Word50

So a sample training datapoint would be:
0, 1, 2, 1, 12, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

Again, the test data is in the same format except that each instance does not have the
first label field, which is stored in a separate file named “test label.txt”.

2.3 Accessing and Processing the Data

1. Download the processed version of the dataset “clickprediction data.tar.gz” from the
course website.

2. After extracting, there should be five files: train.txt, test.txt test label.txt, start.py
(which contains code to load the data) and oversampled train.txt (more on this file
later. For now, just ignore it).

2.4 Batch Gradient Descent (18 points)

Recall that logistic regression can be optimized by gradient descent (or ascent). We call
it batch gradient descent because we’re using the whole training data in order to update
the weights in every iteration, in contrast to stochastic gradient descent. In class you
discussed maximizing the regularized conditional log-probability. Here we’ll be minimizing
the regularized log-loss (the updates will be the same):

l(x, w0,w) =
1

2
λ||w||22 −

1

N
ln
∏
j

P (yj |xj , w0,w)

3

1. (1 pts) Write down the equation for the batch weight update step. That is, how to
update weights wt+1 using (X,y, wt, λ). Assume we’re using l2 regularization and
step size η.

2. (8 pts) Implement gradient descent and run it for 1000 iterations, initializing w with
a vector of all zeros. Remember not to regularize w0!

(a) Plot the log-loss function after each iteration, using η = 0.1 and λ = 0.3. Re-
member to include the regularization term.

(b) Using the weights learned above, predict the CTRs for the test data and report
the SSE (sum of squared errors). When computing the SSE, make sure you are
actually predicting the class and not just using Pr(yj |xj , w0,w) (i.e. you should
be thresholding at 0.5). (Hint: the SSE will just be the number of incorrect
predictions)

3. (9 pts) Now implement the following stop criteria: stop when |l(wt) − l(wt−1)| < ε,
where l is the log-loss function. Run gradient descent with η = 0.1, λ = 0.3 and
ε = 0.0005.

(a) For how many iterations did gradient descent run?

(b) Plot the log-loss function after each iteration (now the x-axis should not go until
1000 as it did in the previous question).

(c) Use the weights you learned to predict the CTRs for the test data, and report
the SSE of your predicted CTR.

2.5 Stochastic Gradient Descent (17 points)

Recall that stochastic gradient descent (SGD) performs a gradient descent using a noisy
estimate of the full gradient based on just the current example.

1. (1 pts) Write down the equation for the weight update step. That is, how to up-
date weights wt+1 using the data point (xj , yj) and wt, where xj = [xj1, x

j
2, ..., x

j
d] is

the feature vector for example j, and yj ∈ {0, 1} is the label. Once again, use l2

regularization.

2. (8 pts) Implement SGD and train the weights by making one pass over the dataset.
You may assume that the data is randomly ordered, so don’t reorder it. Use η = 0.1
for the following:

(a) Run one pass over the data with λ = 0, and report the l2 norm of the weights at
the end (excluding the offset w0). Repeat with λ = 0.3.

(b) Use the weights you found with λ = 0.3 to predict the CTRs for the test data
and report the SSE as before.

3. (8 pts) Now run SGD for 5 passes over the data, with η = 0.1 and λ = 0.3, and report
the value of the log-loss function on the training data after the 5 passes. Run batch
gradient descent for 5 iterations with the same parameters (the computing cost will be
in the same ballpark), and report the value of the log-loss function. Which algorithm
seems to converge faster?

4

2.6 Class Imbalance (10 points)

Now take a look at your predictions on the test data, for either SGD or batch gradient
descent. More specifically, take a look at how many times your algorithm predicted a 1.
Due to class imbalance (few 1’s), SSE is not an adequate measure of quality here. Instead,
we will now use two class-specific metrics: precision and recall, defined as follows:

Given a class c, lets say that there are two groups: A, the group of instances that are
in class c, and B, the group of instances that your algorithm classified as being in class c.

Precision is defined as |A∩B||B| , and recall is defined as |A∩B||A| . If an algorithm doesn’t classify

any instances on class c, let’s define the precision as 0.

1. (5 pts) Run 5000 iterations of batch descent over the data with λ = 0.3 and η = 0.01.
Using the learned weights, report the precision and recall for classes 0 and 1 on the
test set.

2. (5 pts) A very simple (and not the best!) solution to the problem of class imbalance
is to oversample from the class that has fewer instances until the imbalance has been
corrected. This introduces other biases into the dataset, as the instances of that class
will be repeated several times. The file “training oversample.txt” contains a more
even distribution of classes (the positive examples are oversampled). Now run 5000
iterations of batch descent on this training set (λ = 0.3, η = 0.01), and report the
precision/recall values for classes 0 and 1 on the test set.

3 Extra Credit: MNist [50 Points]

Obtain the MNist dataset from http://yann.lecun.com/exdb/mnist/.

1. (10 points) Do linear regression on raw features on this dataset. What classification
error do you get? (Remember that you might need to regularize if things are not
stable).

2. (10 points) Do logistic regression on this dataset. What classification error do you
get?

3. (30 points) Do anything that gets you below 1.8% error. Also, in class, I obtained
around 1.15% error with random features (I used over 100k features. There was one
trick I did which seems helpful to actually get below 1.4% error, which we will look at
later in class). Overall, do anything you like here, so long as you find a way to drop
below 1.8% error.

4 Extra Credit: Smoothness [50 Points]

A convex function G is said to be L-smooth if, for all w and w′, we have that:

G(w′) ≤ G(w) +∇G(w) · (w′ − w) +
L

2
‖w − w′‖2 (2)

The above equation provides an upper bound for the function G. An alternative definition
is that a convex function G is said to be L-smooth if, for all w and w′, we have that:

‖∇G(w)−∇G(w′)‖ ≤ L‖w′ − w‖ (3)

5

http://yann.lecun.com/exdb/mnist/

This latter equation says that the gradients are (Lipschitz) continuous.
Let us show these definitions are identical.

1. (15 points) Assume equation 3 holds. Prove that equation 2 holds. (You will get most
of the credit if you can prove equation 2 with a constant of L rather than L

2 , which is
a little easier.).

2. (35 points) Assume equation 2 holds. Prove that equation 3 holds. (This question is
a little tricky. You will get most of the credit if you can prove equation 3 with 2L
rather than L, which is a little easier.).

6

	Regression and feature selection [20 Points]
	Programming Question [45 Points]
	Unprocessed Dataset
	Processed Dataset (that you will use...)
	Accessing and Processing the Data
	Batch Gradient Descent (18 points)
	Stochastic Gradient Descent (17 points)
	Class Imbalance (10 points)

	Extra Credit: MNist [50 Points]
	Extra Credit: Smoothness [50 Points]

