CSE546 Machine Learning, Autumn 2015: Homework 1

Due: Tuesday, October 20", beginning of class

1 Probability [10 points]

Let X7 and X3 be independent, continuous random variables uniformly distributed on [0,1]. Let X =
min(Xy, X5). Compute

1. (8 points) E(X).

2. (8 points) Var(X).
3. (4 points) Cov(X, X1).

2 MLE [8 points]

This question uses a discrete probability distribution known as the Poisson distribution. A discrete random
variable X follows a Poisson distribution with parameter X\ if

Ak —A

PI‘(X = k) = Ee

ke{0,1,2,...}

Imagine we have a gumball machine which dispenses a random number of gumballs each time you insert
a quarter. Assume that the number of gumballs dispensed is Poisson distributed (i.i.d) with parameter .
Curious and sugar-deprived, you insert 8 quarters one at a time and record the number of gumballs dispensed
on each trial:

Trial 1 2 3 4 5 6 7 8
Gumballs 4 1 3 5 5 1 3 8
Let G = (G4,...,G,) be a random vector where G; is the number of gumballs dispensed on trial :

1. (8 points) Give the log-likelihood function of G given A.
2. (4 points) Compute the MLE for X in the general case.

3. (1 point) Compute the MLE for A using the observed G.



3 Linear Regression: Bias-Variance-Approximation Error Decom-
position [16 points]

Suppose we have a distribution over pairs (X,Y’) where X is a vector and Y is a scalar. The square loss for
a function f: X — R, where X is an arbitrary set, can be defined as:

L(f) = Exy[(Y — f(X))’]

where the expectation is with respect to Y and X.

1. What is the minimizer of f over the class of all functions and justify this? (write your answer in terms
of conditional expectations)

2. Let f* be the minimizer of all functions, and let w* be the best linear predictor, e.g.
w* € argminL(w)

Now suppose we obtain a random training set 7 = {(X1,Y7), (X2,Y2),...(X,,Y,), and let wy be our
estimator (under some algorithm). Define w = E7wy. Show that:

ErL(wr) — L(f7)
=E7Ex y[(E[Y]X] - wrX)?
=Ex(E[Y|X] - w* - X)? +Ex(w* - X —@- X)? + Ex 7(@- X —wr - X)?

:= "approximation error” 4+ ”estimation bias”+ ”estimation variance”

3. (Interpretation) Interpret the last equation and why our terminology is reasonable.

4. (Interpretation for classification) Suppose that Y is binary and take values in {0,1}. Write the Bayes
optimal predictor in this case in terms of probabilities? What are the implications of the above with
regards to using the squared error for binary prediction? In particular, when might be it be the case
that a linear regression is reasonable (and unreasonable) for binary prediction?

4 Invariances under coordinate transforms? [16 points]

Invariances are important in learning. In general, we say our learning algorithm is invariant to a transfor-
mation if its predictions do not change when the input distribution is altered by this tranformations.

Let us consider three estimators: LS (the least squares estimator), RR (the ridge regression estimator), and
L1 (using the Lasso algorithm, i.e. an L1 regularizer where we scale each coordinate of X to have unit second
moment).

Now suppose we transform all our d-dimensional input vectors z, i.e. we work with the vector £ = Mz
where M is some (non-degenerate) d x d transformation.

Clarification: Suppose Bob has a dataset {(X1,Y7)...(X,,Y,)}. Bob runs alearning algorithm (one of the
three algorithms above) and we can look at Bob’s predictions on a new set of points { X, 41, Xn+2, - - - Xnt100}-
Now Alice is presented with a dataset {(f(l,Yl) .. ()N(n,Yn)} where X; = MX; (so Alice’s dataset is just
Bob’s dataset, except someone has done a linear tranform of her data). Alice also runs a learning algorithm
(the same one as Bob) and we can look at Alice’s predictions on a new set of points {X’nH, Xn+27 o Xn+100}
(which are also transformed). We say that the algorithm’s predictions are unaltered if Alice’s and Bob’s
predictions on new data (e.g. the test data) agree.



Also, when Alice and Bob use the Lasso algorithm. They always scale each feature of an input vector = so
that it has unit second moment (this is common in practice). In particular, let [z]; denote the j-th coordinate
of the vector x. Suppose they perform the transformation to any point X (both training and test):

[z]; « [2];/Z;

where Z; = %ZZ[XZ]E A free answer: when Alice and Bob perform the Lasso, they will still make the

same predictions if someone scales each feature (which is a diagonal scaling).
1. In the most general case (for arbitrary, non-degenerate M). Which of our estimators makes predictions
which are unaltered by such a transformation?

2. Now suppose that M is a rotation matrix. Which of our estimators makes predictions which are
unaltered by such a transformation?

3. Now let us suppose that M only rescales coordinates (i.e. M is a diagonal matrix). Which of our
estimators makes predictions which are unaltered by such a transformation?

4. (Interpretation) What do the above imply about the prior knowledge you are utilizing when you choose
one of these methods?

5 Matrix Algebra [8 points]

The trace of a square matrix M, denoted by Tr(M) is defined as the sum of the diagonal entries of M.

1. Show that Tr(ABT) = Tr(B" A) for two matrices A and B of size n x d.

2. Now we prove a few claims used in the second lecture. Define ¥ := %XTX, where X is the n x d data
matrix. (and d < n). Let X; be the i-th row (so X; is a d-vector). Let A1, Ao, ... \s be the eigenvalues

of ¥. Show that: .
1 n
() = = Sl
i=1

i=1

3. (Interpretation) Why is the terminology effective dimension reasonable for the quantity Tr(X).

6 Programming Question [50 points]

The Lasso is the problem of solving

arg miny, ., Z (Xsw +wo —yi)2 + A Z |w| (1)

[ J

Here X is an N x d matrix of data, and Xj is the i-th row of the matrix. y is an N x 1 vector of response
variables, w is a d dimensional weight vector, wy is a scalar offset term, and A is a regularization tuning
parameter. For the programming part of this homework, you are required to implement the coordinate
descent method that can solve the Lasso problem.

This question contains three parts, 1) analyze and optimize the time complexity 2) test your code using toy
examples 3) try your code on a real world dataset. The first part involves no programming, but is crucial
for writing an efficient algorithm.



Algorithm 1: Coordinate Descent Algorithm for Lasso

while not converged do
wy S, (yi -2 Wsz‘j) /N
for k€ {1,2,---d} do
ap < 2 Ef\il X3
ok 2300 X (Yi — (wo + 22,4, Wsz‘j))
(ck+N)/ar ¢ < =X
wi < 0 ek € [=A A
(ck = AN)/ap c¢> A
end
end

6.1 Time complexity and making your code fast [14 points]

In class, you derived the update rules for coordinate descent, which is shown in Algorithm (1] (including the
update term for wg). In this part of question, we will analyze the algorithm and discuss how to make it fast.
There are two key points: utilizing sparsity and caching your predictions. Assume we are using a sparse
matrix representation, so that a dot product takes time proportional to the number of non-zero entries. In
the following questions, your answers should take advantage of the sparsity of X when possible.

1. (2 points) Define §; = X;w + wg. Simplify the update rules for wy and the computation for ¢y in
Algorithm [1| using §. (Hint, there should no longer be a sum over j).

2. (2 points) Let || X||, be the number of nonzero entries in X. What is the time complexity to compute
v?

3. (2 points) What is the time complexity to update wy when ¥ is not already computed? What if y is
already computed? (assume you can access ¥ with no extra cost)

4. (2 points) Let z; = Y. I(X;; # 0) be the number of nonzero elements in j-th column of X. What is
the time complexity to update w; when ¥ is already computed?

(t

5. (2 points) Let yg” = X,wt) + w(()t), and assume we update wo) to w

((]Hl) using the rule above. Let

y,ft“) =X,wt) + w(()tH) be the new prediction after updating. Express §*+1) in terms of §*). What
is the complexity to calculate §*t1) when §(*) is already computed?

6. (2 points) Let y§t> = X,w®) + w((Jt), and assume we update Wl(f) to Wl(f+1) using the rule above. Let
y§t+1) =D itk W;—t)Xij + W](:H)Xik + w(()t) be the new prediction after updating. Express y(*+1) in

terms of ¥ . What is the complexity to calculate §(*t1) when §® is already computed?

7. (2 points) Putting this all together, you get the efficient coordinate descent algorithm in Algorithm
What is per iteration complexity of this algorithm (cost of each round of the while loop)?

6.2 Implement coordinate descent to solve the Lasso

Now we are ready to implement the coordinate descent algorithm in Algorithm 2l Your code must

e Include an offset term wy that is not regularized

e Take optional initial conditions for w and wy



Algorithm 2: Efficient Coordinate Descent Algorithm

while not converged do
¥ < Xw + wyg (re-calculate § each iteration to avoid numerical drift)
apply update rule of wy you derived in Problem Q1
update ¥ using results in Problem Q5
for k€ {1,2,---d} do
apply update rule of wy, you derived in Problem [6.1] Q1
update ¥ using results in Problem Q6
end

end

e Be able to handle sparse X. It is ok for your code not being able to handle dense X. In Python, this
means you can always assume input is scipy.sparse.csc matrix.

e Avoid unnecessary computation (i.e take advantage of what you learned from Problem
You may use any language for your implementation, but we recommend Python. Python is a very useful
language, and you should find that Python achieves reasonable enough performance for this problem. You

may use common computing packages (such as NumPy or SciPy), but please, do not use an existing Lasso
solver.

Before you get started, here are some hints that you may find helpful:
e With the exception of computing objective values or initial conditions, the only matrix operations

required are adding vectors, multiplying a vector by a scalar, and computing the dot product between
two vectors. Try to use as much vector/matrix computation as possible.

e The most important check is to ensure the objective value is nonincreasing with each step.
e To ensure that a solution (W, ) is correct, you also can compute the value
2X T (XWr + g — )

This is a d-dimensional vector that should take the value —Asign(w;) at j for each W; that is nonzero.
For the zero indices of W, this vector should take values lesser in magnitude than A. (This is sim-
ilar to setting the gradient to zero, though more complicated because the objective function is not
differentiable.)

e It is up to you to decide on a suitable stopping condition. A common criteria is to stop when no
element of w changes by more than some small § during an iteration. If you need your algorithm to
run faster, an easy place to start is to loosen this condition.

e For several problems, you will need to solve the Lasso on the same dataset for many values of X\. This
is called a regularization path. One way to do this efficiently is to start at a large A, and then for each
consecutive solution, initialize the algorithm with the previous solution, decreasing A by a constant
ratio until finished.

e The smallest value of A for which the solution W is entirely zero is given by
A’rnax =2 HXT (y - g)Hoo

This is helpful for choosing the first A in a regularization path.
Finally here are some pointers toward useful parts of Python:

e numpy, scipy.sparse, and matplotlib are useful computation packages.



e For storing sparse matrices, the scipy.sparse.cscmatrix (compressed sparse column) format is fast
for column operations.

e Important note for numpy users, scipy.sparse.csc_matrix uses matrix semantics instead of numpy .ndarray.
Please refer to http://wiki.scipy.org/NumPy_for_Matlab_Users|for difference between numpy ma-
trix and ndarray. Specifically, the * operation is matrix multiplication instead of the elementwise
product.

e See the short note on scipy.sparse.cscmatrix in guide_cscmatrix.py to walk you through the
necessary features you need.

e scipy.io.mmread reads sparse matrices in Matrix Market Format.
e numpy.random.randn is nice for generating random Gaussian arrays.
e numpy.linalg.lstsq works for solving unregularized least squares.

e If you're new to Python but experienced with Matlab, consider reading NumPy for Matlab Users at
http://wiki.scipy.org/NumPy_for_Matlab_Users.

6.3 Try out your work on synthetic data [12 points]

We will now try out your solver with some synthetic data. A benefit of the Lasso is that if we believe
many features are irrelevant for predicting y, the Lasso can be used to enforce a sparse solution, effectively
differentiating between the relevant and irrelevant features.

Let’s see if it actually works. Suppose that x € R%,y € R,k < d, and pairs of data (x;,¥;) are generated
independently according to the model

* * * *
Yi = Wy + W Ti1 + Wakj2 + ... WLk + €

where ¢; ~ N(0,0?) is some Gaussian noise. Note that since k < d, the features k + 1 through d are
unnecessary (and potentially even harmful) for predicting y.

With this model in mind, you are now tasked with the following:

1. (6 points) Let N = 50,d = 75,k = 5, and 0 = 1. Generate some data by drawing each element of
X € RV*4 from a standard normal distribution N'(0,1). Let w§ = 0 and create a w* by setting the
first k elements to +10 (choose any sign pattern) and the remaining elements to 0. Finally, generate
a Gaussian noise vector € with variance 0% and form y = Xw* + wj + .

With your synthetic data, solve multiple Lasso problems on a regularization path, starting at \,,,, and
decreasing A by a constant ratio until few features are chosen correctly. Compare the sparsity pattern
of your Lasso solution W to that of the true model parameters w*. Record values for precision (number
of correct nonzeros in w/total number of nonzeros in W) and recall (number of correct nonzeros in
w/k).

How well are you able to discover the true nonzeros? Comment on how A affects these results and
include plots of precision and recall vs. A.

2. (6 points) Change o to 10, regenerate the data, and solve the Lasso problem using a value of A that
worked well when o = 1. How are precision and recall affected? How might you change A in order to
achieve better precision or recall?


http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users

6.4 Become a data scientist at Yelp [24 points]

We’ll now put the Lasso to work on some real data. Recently Yelp held a recruiting competition on the
analytics website Kaggle. Check it out at http://www.kaggle.com/c/yelp-recruiting. (As a side note,
browsing other competitions on the site may also give you some ideas for class projects.)

For this competition, the task is to predict the number of useful upvotes a particular review will receive. For
extra fun, we will add the additional task of predicting the review’s number of stars based on the review’s
text alone.

For many Kaggle competitions (and machine learning methods in general), one of the most important
requirements for doing well is the ability to discover great features. We can use our Lasso solver for this as
follows. First, generate a large amount of features from the data, even if many of them are likely unnecessary.
Afterward, use the Lasso to reduce the number of features to a more reasonable amount.

Yelp provides a variety of data, such as the review’s text, date, and restaurant, as well as data pertaining to
each business, user, and check-ins. This information has already been preprocessed for you into the following
files:

upvote_data.csv Data matrix for predicting number of useful votes
upvote_labels.txt List of useful vote counts for each review
upvote_features.txt Names of each feature for interpreting results
star_data.mtx Data matrix for predicting number of stars
star_labels.txt List of number of stars given by each review
star_features.txt Names of each feature

For each task, data files contain data matrices, while labels are stored in separate text files. The first data
matrix is stored in CSV format, each row corresponding to one review. The second data matrix is stored
in Matrix Market Format, a format for sparse matrices. Meta information for each feature is provided in
the final text files, one feature per line. For the upvote task, these are functions of various data attributes.
For the stars task, these are strings of one, two, or three words (n-grams). The feature values correspond
roughly to how often each word appears in the review. All columns have also been normalized.

To get you started, the Python following code should load the data:

import numpy as np
import scipy.io as io
import scipy.sparse as sparse

# Load a text file of integers:
y = np.loadtxt("upvote_labels.txt", dtype=np.int)

# Load a text file of strings:
featureNames = open("upvote_features.txt").read().splitlines()

# Load a csv of floats:
A = np.genfromtxt ("upvote_data.csv", delimiter=",").tocsc()

# Load a matrix market matrix, convert it to csc format:
B = io.mmread("star_data.mtx") .tocsc()

For this part of the problem, you have the following tasks:

1. (6 points) Solve lasso to predict the number of useful votes a Yelp review will receive. Use the first
4000 samples for training, the next 1000 samples for validation, and the remaining samples for testing.


http://www.kaggle.com/c/yelp-recruiting

Starting at A4z, run Lasso on the training set, decreasing A using previous solutions as initial condi-
tions to each problem. Stop when you have considered enough \’s that, based on validation error, you
can choose a good solution with confidence (for instance, when validation error begins increasing or
stops decreasing significant). At each solution, record the root-mean-squared-error (RMSE) on training
and validation data. In addition, record the number of nonzeros in each solution.

Plot the RMSE values together on a plot against A. Separately plot the number of nonzeros as well.

. (3 points) Find the X that achieves best validation performance, and test your model on the remaining
set of test data. What RMSE value do you obtain?

. (3 points) Inspect your solution and take a look at the 10 features with weights largest in magnitude.
List the names of these features and their weights, and comment on if the weights generally make sense
intuitively.

. (12 points) Repeat part 1, 2, 3 using the data matrix and labels for predicting the score of a review.
Use the first 30,000 examples for training and divide the remaining samples between validation and
testing as before.



	Probability [10 points]
	MLE [8 points]
	Linear Regression: Bias-Variance-Approximation Error Decomposition [16 points] 
	Invariances under coordinate transforms? [16 points] 
	Matrix Algebra [8 points]
	Programming Question [50 points]
	Time complexity and making your code fast [14 points]
	Implement coordinate descent to solve the Lasso
	Try out your work on synthetic data [12 points]
	Become a data scientist at Yelp [24 points]


