Logistic Regression

- Learn $P(Y|X)$ directly
 - Assume a particular functional form for link function
 - Sigmoid applied to a linear function of the input features:
 $$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

- $P(Y = 1|X, W) = 1 - P(Y = 0|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i) \quad \in \mathbb{R}}$

- Features can be discrete or continuous!
Optimizing concave function – Gradient ascent

- Conditional likelihood for Logistic Regression is concave. Find optimum with gradient ascent

Gradient:

\[
\nabla_w l(w) = \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right]'
\]

Update rule:

\[
\Delta w = \eta \nabla_w l(w)
\]

\[
w_i^{(t+1)} = w_i^{(t)} + \eta \frac{\partial l(w)}{\partial w_i}
\]

- Gradient ascent is simplest of optimization approaches
 - e.g., Conjugate gradient ascent can be much better

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < \varepsilon

\[
w_0^{(t+1)} = w_0^{(t)} + \eta \sum_{j=1}^{N} [y_j - \hat{P}(Y \hat{\Phi} = 1 | x_j, w_0^{(t)})] x_j
\]

For i=1,…,k,

\[
w_i^{(t+1)} = w_i^{(t)} + \eta \sum_{j=1}^{N} x_i^j [y_j - \hat{P}(Y \hat{\Phi} = 1 | x_j, w_i^{(t)})]
\]

repeat
The Cost, The Cost!!! Think about the cost…

What’s the cost of a gradient update step for LR???

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left(-\lambda w_i^{(t)} + \sum_{j=1}^{N} x_i^j [y_j - \hat{p}(Y_i^j = 1 | x_i^j, w)] \right) \]

Learning Problems as Expectations

- Minimizing loss in training data:
 - Given dataset: \(x^1, x^2, \ldots, x^N \)
 - Sampled iid from some distribution \(p(x) \) on features:
 - Loss function, e.g., hinge loss, logistic loss,…
 - We often minimize loss in training data:
 \[\ell_D(w) = \frac{1}{N} \sum_{j=1}^{N} \ell(w, x^j) \]

However, we should really minimize expected loss on all data:

\[\ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx \]

So, we are approximating the integral by the average on the training data.
Gradient descent in Terms of Expectations

- “True” objective function:
 \[
 \ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx
 \]

- Taking the gradient:
 \[
 \nabla_w \ell(w) = \nabla_w \left(E_x [\ell(w, x)] \right) = E_x [\nabla_w \ell(w, x)]
 \]

- “True” gradient descent rule:
 \[
 w^{(t+1)} = w^{(t)} - \eta E_x [\nabla_w \ell(w, x)]
 \]

- How do we estimate expected gradient?

SGD: Stochastic Gradient Ascent (or Descent)

- “True” gradient:
 \[
 \nabla \ell(w) = E_x [\nabla \ell(w, x)]
 \]

- Sample based approximation:
 \[
 \nabla \ell(w) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla \ell(w, x_i)
 \]

- What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 \[
 E_x [\nabla \ell(w, x_i)] = \nabla \ell(w)
 \]
 - Very noisy!
 - Called stochastic gradient ascent (or descent)
 - Among many other names
 - VERY useful in practice!!!
Stochastic Gradient Ascent for Logistic Regression

- Logistic loss as a stochastic function:
 \[E_\mathbf{x} [\ell(\mathbf{w}, \mathbf{x})] = E_\mathbf{x} \left[\ln P(y | \mathbf{x}, \mathbf{w}) - \lambda \| \mathbf{w} \|_2^2 \right] \]

- Batch gradient ascent updates:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^{N} x_i^{(j)} y^{(j)} - P(Y = 1 | \mathbf{x}^{(j)}, \mathbf{w}^{(t)}) \right\} \]

- Stochastic gradient ascent updates:
 - Online setting:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)}) \right\} \]

Stochastic Gradient Descent: general case

- Given a stochastic function of parameters:
 \[f(\mathbf{w}) = E_\mathbf{x} [f(\mathbf{w}, \mathbf{x})] \]
 \[\mathbf{w}^{\ast} = \arg \min_{\mathbf{w}} f(\mathbf{w}) = \arg \min_{\mathbf{w}} E_\mathbf{x} [f(\mathbf{w}, \mathbf{x})] \]

- Start from \(\mathbf{w}^{(0)} \)
 \(\mathbf{w}^{(0)} = 0 \)

- Repeat until convergence:
 - Get a sample data point \(\mathbf{x}^t \)
 - Update parameters:
 \[\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta_t \nabla f(\mathbf{w}^{(t)}, \mathbf{x}^t) \]

- Works on the online learning setting!
- Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations
 \(\eta_t \) decreases with iterations, from theory typically:
 \[\eta_t = \frac{c}{t} \]
What you should know…

- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model
 - Logistic function maps real values to $[0,1]$
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Cost of gradient step is high, use stochastic gradient descent

Boosting
Fighting the bias-variance tradeoff

- **Simple (a.k.a. weak) learners are good**
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don’t usually overfit too badly

- **Simple (a.k.a. weak) learners are bad**
 - High bias, can’t solve hard learning problems

Can we make weak learners always good???
- No!!
- But often yes...

Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn **many weak classifiers** that are good at different parts of the input space

- **Output class:** (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction
 - Classifiers will be most “sure” about a particular part of the space
 - On average, do better than single classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]

E.g.,
\[
h_t(x) = \begin{cases}
+1 & \text{if } x_i = 1 \\
0 & \text{if } x_i = 0
\end{cases}
\]

But how do you ???
- force classifiers to learn about different parts of the input space?
- weigh the votes of different classifiers?
Boosting [Schapire, 1989]

- Idea: given a weak learning alg, run it multiple times on (reweighted) training data, then let learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis h_t
 - A strength for this hypothesis α_t

- Final classifier:
 $H(x) = \text{Sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$

- Practically useful
- Theoretically interesting

Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others

- Consider a weighted dataset
 - $D(j)$ – weight of jth training example (x_j, y_j)
 - Interpretations:
 - jth training example counts as $D(j)$ examples
 - If I were to “resample” data, I would get more samples of “heavier” data points

- Now, in all calculations, whenever used, jth training example counts as $D(j)$ “examples”

\[
\text{for gradient descent}
\] \[
\omega(t+1) \leftarrow \omega(t) - \eta \sum_{j=1}^{N} D(j) \ell \left(w_j, x_i \right)
\]
AdaBoost

- Initialize weights to uniform dist: \(D_1(j) = \frac{1}{N} \)
- For \(t = 1 \ldots T \)
 - Train weak learner \(h_t \) on distribution \(D_t \) over the data
 - Choose weight \(\alpha_t \)
 - Update weights:
 \[
 D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y^j h_t(x^j))}{Z_t}
 \]
 Where \(Z_t \) is normalizer:
 \[
 Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))
 \]
- Output final classifier:
 \[
 H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
 \]

Picking Weight of Weak Learner

- Weigh \(h_t \) higher if it did well on training data (weighted by \(D_t \)):
 \[
 \alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
 \]
 Magic: \(\alpha_t \) works like a perfect learner on weighted data => \(\epsilon_t \) ~= 0 => ignore \(h_t \)
 - If \(\epsilon_t = 0 \) => \(h_t \) perfect on weighted data
 - If \(\epsilon_t < \frac{1}{2} \) => \(h_t \) works better than random guess
 - If \(\epsilon_t > \frac{1}{2} \) => \(h_t \) is no better than random guess
 - If \(\epsilon_t = \frac{1}{2} \) => \(h_t \) is same as random guess
- Where \(\epsilon_t \) is the weighted training error:
 \[
 \epsilon_t = \frac{1}{N} \sum_{j=1}^{N} D_t(j) \mathbb{1}[h_t(x^j) \neq y^j]
 \]
Training error of final classifier is bounded by:

$$\frac{1}{N} \sum_{j=1}^{N} \mathbb{I}[H(x^j) \neq y^j] \leq \frac{1}{N} \sum_{j=1}^{N} \exp(-y^j f(x^j))$$

Where

\[f(x) = \sum_{t} \alpha_t h_t(x); \quad H(x) = \text{sign}(f(x)) \]

Why choose α_t for hypothesis h_t this way?

[Schapire, 1989]
Training error of final classifier is bounded by:

\[
\frac{1}{N} \sum_{j=1}^{N} \mathbb{I}[H(x_j) \neq y_j] \leq \frac{1}{N} \sum_{j=1}^{N} \exp(-y_j f(x_j)) = \prod_{t=1}^{T} Z_t
\]

Where \(f(x) = \sum_t \alpha_t h_t(x); H(x) = \text{sign}(f(x)) \)

If we minimize \(\prod_t Z_t \), we minimize our training error.

AdaBoost tightens this bound greedily, by choosing \(\alpha_t \) and \(h_t \) on each iteration to minimize \(Z_t \):

\[
Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))
\]

[Schapire, 1989]