Online Learning
Perceptron Algorithm

Machine Learning – CSE546
Carlos Guestrin (taught by Sameer)
University of Washington
October 23, 2014

©Carlos Guestrin 2005-2013

Challenge 1: Complexity of Computing Gradients

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y_j - \hat{P}(Y = 1 | x_j, w)] \right\} \]

For each feature, \(O(NK) \)

large datasets \(\rightarrow \) problem

SGD
Challenge 2: Data is streaming

- Assumption thus far: **Batch data**
 - All the data points are available

- But, e.g., in click prediction for ads is a streaming data task:
 - User enters query, and ad must be selected:
 - Observe x_j, and must predict y_j
 - User either clicks or doesn't click on ad:
 - Label y_j is revealed afterwards
 - Google gets a reward if user clicks on ad
 - Weights must be updated for next time:

Online Learning Problem

- At each time step t:
 - Observe features of data point:
 - Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course
 - Make a prediction:
 - Note: many models are possible, we focus on linear models
 - For simplicity, use vector notation
 - Observe true label:
 - Note: other observation models are possible, e.g., we don't observe the label directly, but only a noisy version... Details beyond scope of course
 - Update model:
The Perceptron Algorithm [Rosenblatt '58, '62]

- Classification setting: y in $\{-1,+1\}$
- Linear model
 - Prediction: $\hat{y} = \text{sign}(w \cdot x)$
- Training:
 - Initialize weight vector: $w^0 = 0$ or random
 - At each time step:
 - Observe features: x^t
 - Make prediction: $\hat{y}^t = \text{sign}(w^t \cdot x^t)$
 - Observe true class: y^t is $+1$ or -1
 - Update model:
 - If prediction is not equal to truth
 - If $\hat{y}^t = y^t$ then:
 - $w^{t+1} = w^t + \gamma^t x^t$
 - Else:
 - $w^{t+1} = w^t - \gamma^t x^t$

 - If $y^t \cdot w^t \cdot x^t < 0$ then:
 - $\hat{y}^t = 1$ but $y^t = -1$
 - $w^t \cdot x^t < 0$
 - $\rightarrow y^t \cdot w^t \cdot x^t < 0$
 - If $y^t = -1$ but $\hat{y}^t = 1$ then:
 - $w^t \cdot x^t > 0$
 - $\rightarrow y^t \cdot w^t \cdot x^t \leq 0$

©Carlos Guestrin 2005-2013
Fundamental Practical Problem for All Online Learning Methods: \textbf{Which weight vector to report?}

- Perceptron prediction: \(\hat{y} = \text{sign}(w \cdot x) \)
- Suppose you run online learning method and want to sell your learned weight vector… Which one do you sell???
- Last one?
- Random One \(\hat{w} \leq w^T \) too noisy
- Average Weight \(\hat{w} = \frac{1}{T+1} \sum_{i=0}^{T} w^T \) Good!
- Voting - we won't cover

Choice can make a huge difference!!

[Freund & Schapire '99]
Mistake Bounds

- Algorithm “pays” every time it makes a mistake:

- How many mistakes is it going to make?

Linear Separability: More formally, Using Margin

- Data linearly separable, if there exists
 - a vector
 - a margin
- Such that
 - All points are at least \(\gamma \) away from \(w^*x \)
Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - Given a sequence of labeled examples:
 \[(x^1, y^1), \ldots, (x^T, y^T) \]
 - Each feature vector has bounded norm:
 \[||x|| \leq R \]
 - If dataset is linearly separable:
 \[\exists w^*, ||w^*||=1 \quad \left(y^i w^* x^i \geq \gamma \right) \quad \text{for } Y \geq 0 \]
 - Then the number of mistakes made by the online perceptron on any such sequence is bounded by
 \[\left(\frac{R^2}{\gamma} \right) \]
 Doesn't depend on T
 Constant number of mistakes
 Independent of data size

Perceptron Proof for Linearly Separable case

- Every time we make a mistake, we get gamma closer to \(w^* \):
 - Mistake at time \(t+1 \):
 \[w^{t+1} = w^t + y^t x^t \]
 - Taking dot product with \(w^* \):
 \[w^* \cdot w^{t+1} = w^* \cdot (w^t + y^t x^t) = w^* \cdot w^t + y^t (w^* \cdot x^t) \]
 \[= \gamma \]
 \[w^* \cdot w^{t+1} \geq \gamma \]

- Similarly, norm of \(w^{t+1} \) doesn’t grow too fast:
 - \[||w^{t+1}||^2 = ||w^t||^2 + 2y^t (w^t \cdot x^t) + ||x^t||^2 \]
 - \[\leq R^2 \]

- Thus, after \(m \) mistakes:
 - \[||w^{t+1}||^2 \leq m R^2 \]
 - \[||w^t||^2 \leq m R^2 \]

- Putting all together:
 - \[m \gamma \leq w^* \cdot w^{t+1} \leq (||w^t||)(||w^t||) \leq m R \]
 - \[m \gamma \leq m R \]
 - \[m \leq \left(\frac{R^2}{\gamma} \right) \]
Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary,
 no need to be iid
 - Makes a fixed number of mistakes, and it’s done for ever!
 - Even if you see infinite data

- However, real world not linearly separable
 - Can’t expect never to make mistakes again
 - Analysis extends to non-linearly separable case
 - Very similar bound, see Freund & Schapire
 - Converges, but ultimately may not give good accuracy (make many many many mistakes)

What you need to know

- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proof
- In online learning, report averaged weights at the end
What's the Perceptron Optimizing?

Machine Learning – CSE546
Carlos Guestrin
University of Washington
October 23, 2013

What is the Perceptron Doing???

- When we discussed logistic regression:
 - Started from maximizing conditional log-likelihood
 \[
 \max_{\omega} L(y, x; \omega) = \max_{\omega} \log \prod_{i=1}^{m} p(y_i | x_i, \omega) \Rightarrow \text{Gradient} \Rightarrow \text{LR algorithm}
 \]

- When we discussed the Perceptron:
 - Started from description of an algorithm

- What is the Perceptron optimizing???
 \[
 \min_{\omega} \sum_{(x_t, y_t)} \text{loss}(y_t, x_t; \omega)
 \]
Perceptron Prediction: Margin of Confidence

Perceptron prediction:

- Makes a mistake when:

Hinge Loss

- Perceptron prediction: $\text{sign}(w \cdot x)$
- Makes a mistake when:
 - $y \cdot w \cdot x \leq 0$
 - $l = \begin{cases} 0 & \text{if } y \cdot w \cdot x > 0 \\ y \cdot w \cdot x & \text{if } y \cdot w \cdot x \leq 0 \end{cases}$
- Hinge loss (same as maximizing the margin used by SVMs)
Minimizing hinge loss in Batch Setting

- Given a dataset:
 \[(x_1, y_1), \ldots, (x_N, y_N)\]

- Minimize average hinge loss:
 \[
 \min_{\omega} \frac{1}{N} \sum_{i=1}^{N} \max \left(0, -y_i \omega^T x_i \right)
 \]

- How do we compute the gradient?

Subgradients of Convex Functions

- Gradients lower bound convex functions:
 \[
 F(\omega') \geq F(\omega) + \langle \nabla F(\omega), \omega' - \omega \rangle
 \]

- Gradients are unique at \(\omega\) iff function differentiable at \(\omega\)

- Subgradients: Generalize gradients to non-differentiable points:
 - Any plane that lower bounds function:
 \[
 \forall \omega \in \{0\}^d, \quad v \in \partial F(\omega) \iff F(\omega) \geq F(\omega) + v^T (\omega' - \omega)
 \]
 \[
 \nabla F(\omega) \subseteq \partial F(\omega)
 \]
Subgradient of Hinge

- Hinge loss:

- Subgradient of hinge loss:
 - If \(y^{(i)}(w \cdot x^{(i)}) > 0 \): \(\nabla w t = 0 \)
 - If \(y^{(i)}(w \cdot x^{(i)}) < 0 \): \(\nabla w t = -y x \)
 - If \(y^{(i)}(w \cdot x^{(i)}) = 0 \): \(\nabla w t = [y x] \)
 - In one line:
 \[
 \nabla w \lambda(w, x, y) = \begin{cases}
 0 & \text{if } y w x \leq 0 \\
 -y x & \text{if } y w x > 0
 \end{cases}
 \]

Subgradient Descent for Hinge Minimization

- Given data:

- Want to minimize:

- Subgradient descent works the same as gradient descent:
 - But if there are multiple subgradients at a point, just pick (any) one:
Perceptron Revisited

- Perceptron update:
 \[\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \mathbf{1} \cdot \begin{cases} y^{(t)} \mathbf{x}^{(t)} \\ y^{(t)} \mathbf{x}^{(t)} \end{cases} \cdot \mathbf{1} \cdot \begin{cases} 0 \\ y^{(t)} \mathbf{x}^{(t)} \end{cases} \]

- Batch hinge minimization update:
 \[\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{1} \cdot \begin{cases} y^{(i)} \mathbf{x}^{(i)} \\ y^{(i)} \mathbf{x}^{(i)} \end{cases} \cdot \mathbf{1} \cdot \begin{cases} 0 \\ y^{(i)} \mathbf{x}^{(i)} \end{cases} \right) \]

- Difference?

What you need to know

- Perceptron is optimizing hinge loss
- Subgradients and hinge loss
- (Sub)gradient decent for hinge objective