Reinforcement Learning

training by feedback
Learning to act

- Reinforcement learning
- An agent
 - Makes sensor observations
 - Must select action
 - Receives rewards
 - positive for “good” states
 - negative for “bad” states

[Ng et al. ’05]
Markov Decision Process (MDP) Representation

- State space:
 - Joint state \mathbf{x} of entire system

- Action space:
 - Joint action $\mathbf{a} = \{a_1, \ldots, a_n\}$ for all agents

- Reward function:
 - Total reward $R(\mathbf{x}, \mathbf{a})$
 - sometimes reward can depend on action

- Transition model:
 - Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x}, \mathbf{a})$
People in economics and probabilistic decision-making do this all the time.

The “Discounted sum of future rewards” using discount factor γ is

$$(\text{reward now}) + \gamma (\text{reward in 1 time step}) + \gamma^2 (\text{reward in 2 time steps}) + \gamma^3 (\text{reward in 3 time steps}) + \ldots$$

\[0 < \gamma < 1\]

... (infinite sum)
The Academic Life

Define:

\[V_A = \text{Expected discounted future rewards starting in state A} \]
\[V_B = \text{Expected discounted future rewards starting in state B} \]
\[V_T = \text{Tenured Prof 400} \]
\[V_S = \text{On the Street 10} \]
\[V_D = \text{Dead 0} \]

How do we compute \(V_A, V_B, V_T, V_S, V_D \)?
Policy

Policy: $\pi(x) = a$

At state x, action a for all agents

$\pi(x_0) = \text{both peasants get wood}$

$\pi(x_1) = \text{one peasant builds barrack, other gets gold}$

$\pi(x_2) = \text{peasants get gold, footmen attack}$
Value of Policy

Value: \(V_\pi(x) \)

Expected long-term reward starting from \(x \)

\[
V_\pi(x_0) = E_\pi[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \gamma^4 R(x_4) + \ldots]
\]

Future rewards discounted by \(\gamma \) in \([0,1)\)
Computing the value of a policy

\[V_\pi(x_0) = E_\pi[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \gamma^4 R(x_4) + \ldots] \]

- Discounted value of a state:
 - value of starting from \(x_0 \) and continuing with policy \(\pi \) from then on

\[
V_\pi(x_0) = E_\pi[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \cdots]
= E_\pi\left[\sum_{t=0}^{\infty} \gamma^t R(x_t) \right]
\]

- A recursion!

©Carlos Guestrin 2005-2014
Simple approach for computing the value of a policy: Iteratively

\[V_\pi(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_\pi(x') \]

- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)
 - Start with some guess \(V^0 \)
 - Iteratively say:
 \[V_{\pi}^{t+1}(x) \leftarrow R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_\pi^t(x') \]
 - Stop when \(\|V_{t+1} - V_t\|_\infty < \varepsilon \)
 - means that \(\|V_\pi - V_{t+1}\|_\infty < \varepsilon/(1-\gamma) \)
But we want to learn a Policy

- So far, told you how good a policy is…
- But how can we choose the best policy???
- Suppose there was only one time step:
 - world is about to end!!!
 - select action that maximizes reward!

Policy: \(\pi(x) = a \)

At state \(x \), action \(a \) for all agents

\(\pi(x_0) = \) both peasants get wood

\(\pi(x_1) = \) one peasant builds barrack, other gets gold

\(\pi(x_2) = \) peasants get gold, footmen attack

©Carlos Guestrin 2005-2014
Unrolling the recursion

- Choose actions that lead to best value in the long run
 - Optimal value policy achieves optimal value V^*

$$V^*(x_0) = \max_{a_0} R(x_0, a_0) + \gamma E_{a_0} \left[\max_{a_1} R(x_1) + \gamma^2 E_{a_1} \left[\max_{a_2} R(x_2) + \cdots \right] \right]$$
Bellman equation

- Evaluating policy π:
 $$ V_\pi(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_\pi(x') $$

- Computing the optimal value V^* - Bellman equation
 $$ V^*(x) = \max_a R(x, a) + \gamma \sum_{x'} P(x' \mid x, a) V^*(x') $$
Interesting fact – Unique value

\[V^*(x) = \max_a R(x, a) + \gamma \sum_{x'} P(x' \mid x, a)V^*(x') \]

- *Slightly surprising fact:* There is only one \(V^* \) that solves Bellman equation!
 - there may be many optimal policies that achieve \(V^* \)
- *Surprising fact:* optimal policies are good everywhere!!!

\[
V_{\pi^*}(x) \geq V_\pi(x), \ \forall x, \ \forall \pi
\]
Solving an MDP

Solve Bellman equation

Optimal value $V^*(x)$

Optimal policy $\pi^*(x)$

\[V^*(x) = \max_a R(x,a) + \gamma \sum_{x'} P(x'|x,a)V^*(x') \]

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard ‘60, Bellman ‘57]
- Value iteration [Bellman ‘57]
- Linear programming [Manne ‘60]
- …
Value iteration (a.k.a. dynamic programming) – the simplest of all

\[V^*(x) = R(x, a) + \gamma \sum_{x'} P(x' | x, a = \pi(x)) V^*(x') \]

- Start with some guess \(V^0 \)
- Iteratively say:
 - \(V^{t+1}(x) \leftarrow \max_a R(x, a) + \gamma \sum_{x'} P(x' | x, a) V^t(x') \)

- Stop when \(\|V_{t+1} - V_t\|_\infty < \varepsilon \)
 - \(\square \) means that \(\|V^* - V_{t+1}\|_\infty < \varepsilon/(1-\gamma) \)
Optimal Long-term Plan

Optimal value function $V^*(x)$

Optimal Policy: $\pi^*(x)$

Optimal policy:

$$\pi^*(x) = \arg\max_a R(x,a) + \gamma \sum_{x'} P(x'|x,a)V^*(x')$$
A simple example

You run a startup company.

In every state you must choose between Saving money or Advertising.

\[\gamma = 0.9 \]
Let’s compute $V_t(x)$ for our example

$$V^{t+1}(x) = \max_a R(x, a) + \gamma \sum_{x'} P(x' | x, a) V^t(x')$$
Let’s compute $V_t(x)$ for our example

$$V^{t+1}(x) = \max_{a} R(x, a) + \gamma \sum_{x'} P(x'|x, a)V^t(x')$$
What you need to know

- What’s a Markov decision process
 - state, actions, transitions, rewards
 - a policy
 - value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - Bellman equation
- Solving Bellman equation
 - with value iteration, policy iteration and linear programming
Acknowledgment

- This lecture contains some material from Andrew Moore’s excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials
The Reinforcement Learning task

World: You are in state 34.
Your immediate reward is 3. You have possible 3 actions.

Robot: I’ll take action 2.

World: You are in state 77.
Your immediate reward is -7. You have possible 2 actions.

Robot: I’ll take action 1.

World: You’re in state 34 (again).
Your immediate reward is 3. You have possible 3 actions.
Formalizing the (online) reinforcement learning problem

- Given a set of states X and actions A
 - in some versions of the problem size of X and A unknown

- Interact with world at each time step t:
 - world gives state x_t and reward r_t
 - you give next action a_t

- **Goal**: (quickly) learn policy that (approximately) maximizes long-term expected discounted reward
The “Credit Assignment” Problem

I’m in state 43, reward = 0, action = 2

- “ “ “ 39, “ = 0, “ = 4
- “ “ “ 22, “ = 0, “ = 1
- “ “ “ 21, “ = 0, “ = 1
- “ “ “ 21, “ = 0, “ = 1
- “ “ “ 13, “ = 0, “ = 2
- “ “ “ 54, “ = 0, “ = 2
- “ “ “ 26, “ = 100,

Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there?? This is the Credit Assignment problem.
Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - is this the best I can hope for???

- **Exploitation**: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - at the risk of missing out on some large reward somewhere

- **Exploration**: should I look for a region with more reward?
 - at the risk of wasting my time or collecting a lot of negative reward
Two main reinforcement learning approaches

- Model-based approaches:
 - explore environment, then learn model \(P(x'|x,a) \) and \(R(x,a) \) (almost) everywhere
 - use model to plan policy, MDP-style
 - approach leads to strongest theoretical results
 - works quite well in practice when state space is manageable

- Model-free approach:
 - don’t learn a model, learn value function or policy directly
 - leads to weaker theoretical results
 - often works well when state space is large
Rmax – A model-based approach
Given a dataset – learn model

Given data, learn (MDP) Representation:

- Dataset:

- Learn reward function:
 - $R(x,a)$

- Learn transition model:
 - $P(x'|x,a)$
Planning with insufficient information

- Model-based approach:
 - estimate $R(x,a)$ & $P(x'|x,a)$
 - obtain policy by value or policy iteration, or linear programming
 - No credit assignment problem!
 - learning model, planning algorithm takes care of “assigning” credit

- What do you plug in when you don’t have enough information about a state?
 - don’t reward at a particular state
 - plug in 0?
 - plug in smallest reward (R_{min})?
 - plug in largest reward (R_{max})?
 - don’t know a particular transition probability?
Some challenges in model-based RL 2: Exploration-Exploitation tradeoff

- A state may be very hard to reach
 - waste a lot of time trying to learn rewards and transitions for this state
 - after a much effort, state may be useless

- A strong advantage of a model-based approach:
 - you know which states estimate for rewards and transitions are bad
 - can (try) to plan to reach these states
 - have a good estimate of how long it takes to get there
A surprisingly simple approach for model based RL – The Rmax algorithm [Brafman & Tennenholtz]

- **Optimism in the face of uncertainty!!!!**
 - heuristic shown to be useful long before theory was done (e.g., Kaelbling ’90)
 - If you don’t know reward for a particular state-action pair, set it to R_{max}!!!

- If you don’t know the transition probabilities $P(x'|x,a)$ from some state action pair x,a assume you go to a magic, fairytale new state x_0!!!
 - $R(x_0,a) = R_{\text{max}}$
 - $P(x_0|x_0,a) = 1$
Understanding R_{max}

With R_{max} you either:

- **explore** – visit a state-action pair you don’t know much about
 - because it seems to have lots of potential
- **exploit** – spend all your time on known states
 - even if unknown states were amazingly good, it’s not worth it

Note: you never know if you are exploring or exploiting!!!

©Carlos Guestrin 2005-2014
Implicit Exploration-Exploitation Lemma

Lemma: every T time steps, either:
- **Exploits**: achieves near-optimal reward for these T-steps, or
- **Explores**: with high probability, the agent visits an unknown state-action pair
 - learns a little about an unknown state
- T is related to *mixing time* of Markov chain defined by MDP
 - time it takes to (approximately) forget where you started
The Rmax algorithm

Initialization:
- Add state x_0 to MDP
- $R(x,a) = R_{\text{max}}, \forall x,a$
- $P(x_0|x,a) = 1, \forall x,a$
- all states (except for x_0) are unknown

Repeat
- obtain policy for current MDP and Execute policy
- for any visited state-action pair, set reward function to appropriate value
- if visited some state-action pair x,a enough times to estimate $P(x'|x,a)$
 - update transition probs. $P(x'|x,a)$ for x,a using MLE
 - recompute policy
Visit enough times to estimate $P(x'|x,a)$?

- How many times are enough?
 - use Chernoff Bound!

- Chernoff Bound:
 - X_1,\ldots,X_n are i.i.d. Bernoulli trials with prob. θ
 - $P(|1/n \sum_i X_i - \theta| > \varepsilon) \leq \exp\{-2n\varepsilon^2\}$
Putting it all together

Theorem: With prob. at least $1-\delta$, Rmax will reach a ε-optimal policy in time polynomial in: num. states, num. actions, T, $1/\varepsilon$, $1/\delta$

- Every T steps:
 - achieve near optimal reward (great!), or
 - visit an unknown state-action pair! num. states and actions is finite, so can’t take too long before all states are known
What you need to know about RL…

- Neither supervised, nor unsupervised learning
- Try to learn to act in the world, as we travel states and get rewards
- Model-based & Model-free approaches
- Rmax, a model based approach:
 - Learn model of rewards and transitions
 - Address exploration-exploitation tradeoff
 - Simple algorithm, great in practice