What now…

- We have explored many ways of learning from data
- But…
 - How good is our classifier, really?
 - How much data do I need to make it “good enough”?
A simple setting...

- **Classification**
 - N data points
 - **Finite** number of possible hypotheses (e.g., decision trees of depth d)
- A learner finds a hypothesis h that is **consistent** with training data
 - Gets zero error in training – $\text{error}_{\text{train}}(h) = 0$
- What is the probability that h has more than ε true error?
 - $\text{error}_{\text{true}}(h) \geq \varepsilon$

How likely is a bad hypothesis to get N data points right?

- Hypothesis h that is **consistent** with training data → got N i.i.d. points right
 - h “bad” if it gets all this data right, but has high true error
- Prob. h with $\text{error}_{\text{true}}(h) \geq \varepsilon$ gets one data point right
- Prob. h with $\text{error}_{\text{true}}(h) \geq \varepsilon$ gets N data points right
But there are many possible hypothesis that are consistent with training data.

How likely is learner to pick a bad hypothesis?

- Prob. h with $\text{error}_{\text{true}}(h) \geq \varepsilon$ gets N data points right.

- There are k hypothesis consistent with data
 - How likely is learner to pick a bad one?
Union bound

- \(P(A \cup B \cup C \cup D \cup \ldots) \)

How likely is learner to pick a bad hypothesis

- Prob. a particular \(h \) with \(\text{error}_{\text{true}}(h) \geq \varepsilon \) gets \(N \) data points right

- There are \(k \) hypothesis consistent with data
 - How likely is it that learner will pick a bad one out of these \(k \) choices?
Generalization error in finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D with N i.i.d. samples, $0 < \epsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(error_{true}(h) > \epsilon) \leq |H|e^{-N\epsilon}$$

Using a PAC bound

- Typically, 2 use cases:
 - 1: Pick ϵ and δ, give you N
 - 2: Pick N and δ, give you ϵ
Summary: Generalization error in finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D with N i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(error_{true}(h) > \varepsilon) \leq |H|e^{-N\varepsilon}$$

Even if h makes zero errors in training data, may make errors in test

Limitations of Haussler ‘88 bound

- Consistent classifier
- Size of hypothesis space
What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with $\text{error}_{\text{train}}(h)$ in training set?

Simpler question: What’s the expected error of a hypothesis?

- The error of a hypothesis is like estimating the parameter of a coin!

- Chernoff bound: for N i.i.d. coin flips, x^1, \ldots, x^N, where $x^i \in \{0, 1\}$. For $0<\varepsilon<1$:

$$P\left(\theta - \frac{1}{N} \sum_{j=1}^{N} x^j > \epsilon\right) \leq e^{-2N\epsilon^2}$$
Using Chernoff bound to estimate error of a single hypothesis

\[P \left(\theta - \frac{1}{N} \sum_{j=1}^{N} x_j > \epsilon \right) \leq e^{-2N\epsilon^2} \]

But we are comparing many hypothesis: **Union bound**

For each hypothesis \(h_i \):

\[P \left(error_{true}(h_i) - error_{train}(h_i) > \epsilon \right) \leq e^{-2N\epsilon^2} \]

What if I am comparing two hypothesis, \(h_1 \) and \(h_2 \)?
Generalization bound for |H| hypothesis

Theorem: Hypothesis space \(H \) finite, dataset \(D \) with \(N \) i.i.d. samples, \(0 < \varepsilon < 1 \) : for any learned hypothesis \(h \):

\[
P(error_{true}(h_i) - error_{train}(h_i) > \varepsilon) \leq e^{-2N\varepsilon^2}
\]

PAC bound and Bias-Variance tradeoff

\[
P(error_{true}(h) - error_{train}(h) > \varepsilon) \leq e^{-2N\varepsilon^2}
\]

or, after moving some terms around, with probability at least \(1-\delta \):

\[
error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2N}}
\]

Important: PAC bound holds for all \(h \), but doesn’t guarantee that algorithm finds best \(h \)!!!
What about the size of the hypothesis space?

\[N \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{2\varepsilon^2} \]

- How large is the hypothesis space?

Boolean formulas with \(m \) binary features

\[N \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{2\varepsilon^2} \]
Number of decision trees of depth k

Recursive solution
Given m attributes
$H_k = \text{Number of decision trees of depth } k$
$H_0 = 2$
$H_{k+1} = (\# \text{choices of root attribute}) \times$
$\times (\# \text{possible left subtrees}) \times$
$\times (\# \text{possible right subtrees})$
$= m \times H_k \times H_k$

Write $L_k = \log_2 H_k$
$L_0 = 1$
$L_{k+1} = \log_2 m + 2L_k$
So $L_k = (2^k-1)(1+\log_2 m) + 1$

PAC bound for decision trees of depth k

$N \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{2\epsilon^2}$

- Bad!!!
 - Number of points is exponential in depth!

- But, for N data points, decision tree can’t get too big…

Number of leaves never more than number data points
Number of Decision Trees with k Leaves

- Number of decision trees of depth k is really really big:
 - \(\ln |H| \) is about \(2^k \log m \)

- Decision trees with up to k leaves:
 - \(|H| \) is about \(m^k k^{2k} \)
 - A very loose bound

PAC bound for decision trees with k leaves – Bias-Variance revisited

\[
\ln |H_{\text{DTs k leaves}}| \leq 2k \ln (m + k)
\]

\[
\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{2k \ln (m + k) + \ln \frac{1}{\delta}}{2N}}
\]
What did we learn from decision trees?

- Bias-Variance tradeoff formalized

\[
\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{2k(\ln m + \ln k) + \ln \frac{1}{\delta}}{2N}}
\]

- Moral of the story:
 Complexity of learning not measured in terms of size hypothesis space, but in maximum \textit{number of points} that allows consistent classification
 - Complexity N – no bias, lots of variance
 - Lower than N – some bias, less variance

What about continuous hypothesis spaces?

- Continuous hypothesis space:
 - $|H| = \infty$
 - Infinite variance???

- As with decision trees, only care about the maximum number of points that can be classified exactly!
 - Called VC dimension… see readings for details
What you need to know

- Finite hypothesis space
 - Derive results
 - Counting number of hypothesis
 - Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case – decision trees
 - Infinite case – VC dimension
- Bias-Variance tradeoff in learning theory
- Remember: will your algorithm find best classifier?