Clustering

K-means

Machine Learning – CSE546
Carlos Guestrin
University of Washington
November 4, 2014

©Carlos Guestrin 2005-2014

Clustering images

Set of Images

organize data into themes

given no labels

[Goldberger et al., 2005]
K-means

- Randomly initialize \(k \) centers
 - \(\mu^{(0)} = \mu_1^{(0)}, \ldots, \mu_k^{(0)} \)

Repeat until convergence: no point changes cluster membership

- **Classify**: Assign each point \(j \in \{1, \ldots, N\} \) to nearest center:
 - \(c^{(t)}(j) \leftarrow \arg \min_i ||\mu_i - x_j||^2 \)

- **Recenter**: \(\mu_i^{(t)} \) becomes centroid of its point:
 - \(\mu_i^{(t+1)} \leftarrow \arg \min_\mu \sum_{j: c^{(t)}(j) = i} ||\mu - x_j||^2 \)
 - Equivalent to \(\mu_i \leftarrow \text{average of its points}! \)

Mixtures of Gaussians

Machine Learning – CSE546
Carlos Guestrin
University of Washington

November 4, 2014
(One) bad case for k-means

- Clusters may overlap
- Some clusters may be “wider” than others

Density Estimation

- Estimate a density based on x_1, \ldots, x_N

$x_1, \ldots, x_N \sim \mathcal{P}$

learn \mathcal{P} from data

combined population

U.S. Sales

x_1
Density as Mixture of Gaussians

Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

Contour Plot of Joint Density

Gaussians in d Dimensions

$$P(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right]$$
Density as Mixture of Gaussians

Approximate density with a mixture of Gaussians:

\[
p(x|\pi, \mu, \Sigma) = \sum_{i=1}^{k} \pi_i N(x|\mu_i, \Sigma_i)
\]

Our actual observations

C. Bishop, *Pattern Recognition & Machine Learning*
Clustering our Observations

Imagine we have an assignment of each x^i to a Gaussian

Our actual observations

Introduce latent cluster indicator variable z^i

Then we have

$$p(x^i | z^i, \pi, \mu, \Sigma) =$$
Clustering our Observations

- We must infer the cluster assignments from the observations

- Posterior probabilities of assignments to each cluster *given* model parameters:

\[r_{ik} = p(z^i = k|x^i, \pi, \mu, \Sigma) = \]

Soft assignments to clusters

Unsupervised Learning:
not as hard as it looks

- Sometimes easy

- Sometimes impossible

- And sometimes in between
Summary of GMM Concept

- Estimate a density based on x^1, \ldots, x^N

$$p(x^i | \pi, \mu, \Sigma) = \sum_{z^i=1}^{K} \pi_{z^i} \mathcal{N}(x^i | \mu_{z^i}, \Sigma_{z^i})$$

Complete data labeled by true cluster assignments

Surface Plot of Joint Density, Marginalizing Cluster Assignments

Summary of GMM Components

- Observations
 $$x^i \in \mathbb{R}^d, \quad i = 1, 2, \ldots, N$$

- Hidden cluster labels
 $$z^i \in \{1, 2, \ldots, K\}, \quad i = 1, 2, \ldots, N$$

- Hidden mixture means
 $$\mu_k \in \mathbb{R}^d, \quad k = 1, 2, \ldots, K$$

- Hidden mixture covariances
 $$\Sigma_k \in \mathbb{R}^{d \times d}, \quad k = 1, 2, \ldots, K$$

- Hidden mixture probabilities
 $$\pi_k, \quad \sum_{k=1}^{K} \pi_k = 1$$

Gaussian mixture marginal and conditional likelihood:

$$p(x^i | \pi, \mu, \Sigma) = \sum_{z^i=1}^{K} \pi_{z^i} p(x^i | z^i, \mu, \Sigma)$$

$$p(x^i | z^i, \mu, \Sigma) = \mathcal{N}(x^i | \mu_{z^i}, \Sigma_{z^i})$$
Next… back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?
But we don’t see class labels!!!

MLE:
- \(\arg\max \prod_i P(z^i|x^i) \)

But we don’t know \(z^i \)

Maximize marginal likelihood:
- \(\arg\max \prod_i P(x^i) = \arg\max \prod_i \sum_{k=1}^{K} P(z^i=k|x^i) \)

Special case: spherical Gaussians and hard assignments

\[
P(z^i = k, x^i) = \frac{1}{(2\pi)^{m/2} |\Sigma|^1/2} \exp \left[-\frac{1}{2} \left(x^i - \mu_k \right)^T \Sigma_k^{-1} \left(x^i - \mu_k \right) \right] P(z^i = k)
\]

- If \(P(X|z=k) \) is spherical, with same \(\sigma \) for all classes:
 \[
P(x^i | z^i = k) \propto \exp \left[-\frac{1}{2\sigma^2} \|x^i - \mu_k\|^2 \right]
 \]

- If each \(x^i \) belongs to one class \(C(i) \) (hard assignment), marginal likelihood:
 \[
 \prod_{i=1}^{N} \sum_{k=1}^{K} P(x^i, z^i = k) \propto \prod_{i=1}^{N} \exp \left[-\frac{1}{2\sigma^2} \|x^i - \mu_{C(i)}\|^2 \right]
 \]

Same as K-means!!!
EM: “Reducing” Unsupervised Learning to Supervised Learning

- If we knew assignment of points to classes → Supervised Learning!

- Expectation-Maximization (EM)
 - Guess assignment of points to classes
 - In standard (“soft”) EM: each point associated with prob. of being in each class
 - Recompute model parameters
 - Iterate

Generic Mixture Models

- Observations:

- Parameters:

- Likelihood:

 - Ex. \(z^i \) = country of origin, \(x^i \) = height of \(i^{th} \) person
 - \(k^{th} \) mixture component = distribution of heights in country \(k \)
ML Estimate of Mixture Model Params

- Log likelihood
 \[L_x(\theta) \triangleq \log p\{\{x^i\} | \theta\} = \sum_i \log \sum_{z^i} p(x^i, z^i | \theta) \]

- Want ML estimate
 \[\hat{\theta}^{ML} \]

- Neither convex nor concave and local optima

If “complete” data were observed...

- Assume class labels \(z^i \) were observed in addition to \(x^i \)
 \[L_{x,z}(\theta) = \sum_i \log p(x^i, z^i | \theta) \]

- Compute ML estimates
 - Separates over clusters \(k \)

- Example: mixture of Gaussians (MoG) \(\theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K \)
Iterative Algorithm

- Motivates a coordinate ascent-like algorithm:
 1. Infer missing values z^i given estimate of parameters $\hat{\theta}$
 2. Optimize parameters to produce new $\hat{\theta}$ given “filled in” data z^i
 3. Repeat

- Example: MoG (derivation soon…)
 1. Infer “responsibilities”
 \[r_{ik} = p(z^i = k \mid x^i, \hat{\theta}(t-1)) = \]
 2. Optimize parameters
 \[\max \text{ w.r.t. } \pi_k : \]
 \[\max \text{ w.r.t. } \mu_k, \Sigma_k : \]

E.M. Convergence

- EM is coordinate ascent on an interesting potential function
- Coord. ascent for bounded pot. func. \Rightarrow convergence to a local optimum guaranteed

- This algorithm is REALLY USED. And in high dimensional state spaces, too.
 E.G. Vector Quantization for Speech Data
Gaussian Mixture Example: Start

After first iteration
After 2nd iteration

After 3rd iteration
After 4th iteration

After 5th iteration
Some Bio Assay data

GMM clustering of the assay data
E.M.: The General Case

- E.M. widely used beyond mixtures of Gaussians
 - The recipe is the same…

- Expectation Step: Fill in missing data, given current values of parameters, $\theta^{(t)}$
 - If variable y is missing (could be many variables)
 - Compute, for each data point x_i, for each value i of y:
 - $P(y=i|x_i,\theta^{(t)})$

- Maximization step: Find maximum likelihood parameters for (weighted) “completed data”:
 - For each data point x_i, create k weighted data points
 - Set $\theta^{(t+1)}$ as the maximum likelihood parameter estimate for this weighted data

- Repeat
Initialization

- In mixture model case where \(y^i = \{ z^i, x^i \} \) there are many ways to initialize the EM algorithm

- Examples:
 - Choose K observations at random to define each cluster. Assign other observations to the nearest "centroid" to form initial parameter estimates
 - Pick the centers sequentially to provide good coverage of data
 - Grow mixture model by splitting (and sometimes removing) clusters until K clusters are formed

- Can be quite important to quality of solution in practice

What you should know

- K-means for clustering:
 - algorithm
 - converges because it’s coordinate ascent

- EM for mixture of Gaussians:
 - How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data

- Remember, E.M. can get stuck in local minima, and empirically it DOES

- EM is coordinate ascent