Learning Bayes nets

Data
\[x^{(1)} \]
\[\ldots \]
\[x^{(m)} \]

\{ structure \} +

CPTs – \[P(X_i \mid Pa_{xi}) \]

\[\text{Max likelihood Data MLE} \]
\[P(D \mid \Theta, \Theta_c) \]
Chow-Liu tree learning algorithm 1

- For each pair of variables X_i, X_j
 - Compute empirical distribution:
 $$P(x_i, x_j) = \frac{\text{Count}(x_i, x_j)}{m}$$
 - Compute mutual information:
 $$I(X_i, X_j) = \sum_{x_i,x_j} P(x_i, x_j) \log \frac{P(x_i, x_j)P(x_i)P(x_j)}{P(x_i, x_j)}$$
- Define a graph
 - Nodes $X_1, ..., X_n$
 - Edge (i,j) gets weight $I(X_i, X_j)$

Run max spanning tree algorithm; complexity is $O(E \log n)$, $O(n^2\log n)$

Chow-Liu tree learning algorithm 2

- $\log \hat{P}(D | \theta, G) = m \sum_i I(X_i, \text{Pa}_{X_i, G}) - m \sum_i \hat{H}(X_i)$
- Optimal tree BN
 - Compute maximum weight spanning tree
 - Directions in BN: pick any node as root, breadth-first-search defines directions
Structure learning for general graphs

- In a tree, a node only has one parent

- **Theorem:**
 - The problem of learning a BN structure with at most \(d \) parents is **NP-hard for any (fixed) \(d \)\(^*\)

- Most structure learning approaches use heuristics
 - (Quickly) Describe the two simplest heuristics

Learn BN structure using local search

- **Local search**, possible moves:
 - Add edge
 - Delete edge
 - Invert edge

- Score using BIC

> **penalties for dense graphs**
Learn Graphical Model Structure using LASSO

- Graph structure is about selecting parents:
 \[P(x_i | P_{x_i}) \]
 - If no independence assumptions, then CPTs depend on all parents:
 \[P(x_i | P_{x_i}) \subseteq \{ x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \} \]
 - With independence assumptions, depend on key variables:
 \[P(H|I|A|S|N) = \text{like roots of other vars are } \emptyset \]
 - One approach for structure learning, sparse logistic regression!
 Logistic regression with L1 penalty to eschew parents of each \(x_i \)

What you need to know about learning BN structures

- Decomposable scores
 - Maximum likelihood
 - Information theoretic interpretation
- Best tree (Chow-Liu)
- Beyond tree-like models is NP-hard
- Use heuristics, such as:
 - Local search
 - LASSO