Factored joint distribution - Preview

\[P(F, A, S, H, N) = P(F) \cdot P(A) \cdot P(S|F, A) \cdot P(H|S) \cdot P(N|H) \]

\[2^5 - 1 = 31 \text{ possible states} \]
What about probabilities?

Conditional probability tables (CPTs)

Key: Independence assumptions

Knowing sinus separates the variables from each other
The independence assumption

Local Markov Assumption:
A variable X is independent of its non-descendants given its parents

Explaining away

Local Markov Assumption:
A variable X is independent of its non-descendants given its parents

Flu \rightarrow Allergy \rightarrow Sinus
Flu \rightarrow Headache
Flu \rightarrow Nose

Flu \rightarrow Allergy \rightarrow Sinus
Flu \rightarrow Headache
Flu \rightarrow Nose

Flu Allergy Sinus Headache Nose

F A S H N

Notation:
- F: Flu
- A: Allergy
- S: Sinus
- H: Headache
- N: Nose

P(F=t | S=t) ≠ P(F=t | S=t, A=t)
Naïve Bayes revisited

Local Markov Assumption:
A variable X is independent of its non-descendants given its parents

Joint distribution

Why can we decompose? Markov Assumption!
The chain rule of probabilities

- $P(A, B) = P(A)P(B|A) = P(B)P(A|B)$

 For any dist

 $P(F, S) = P(F)P(S|F)$

 $P(F, A, S) = P(F)P(A|F)P(S|F, A)$

- More generally:

 $P(X_1, \ldots, X_n) = P(X_1)P(X_2|X_1)\ldots P(X_n|X_1, \ldots, X_{n-1})$

Chain rule & Joint distribution

Local Markov Assumption: A variable X is independent of its non-descendants given its parents.

Proof by example: If $P(FASH) = P(F)P(A|F)P(S|FA)P(H|FAS)P(N|FASH)$, then

- $P(F)P(A|F)$
- $P(S|FA)$
- $P(H|FAS)$
- $P(N|FASH)$

Order matters? $P(FASH) = P(F)P(A|F)P(S|FA)P(N|FASH)$

Would not get $P(F)$ if X depends on F and H.

Follow typographical order:

- $A \perp F \iff P(A|F) = P(A)$
- $H \perp FASH \iff P(H|FAS) = P(H|S)$
- $N \perp FASH \iff P(N|FASH) = P(N)$
The Representation Theorem – Joint Distribution to BN

BN:

Joint probability distribution:

\[
P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | \text{Pa}_X_i)
\]

If conditional independencies in BN are subset of conditional independencies in \(P \)

Obtain

Encodes independence assumptions

Two (trivial) special cases

Edgeless graph

- \(X_1, X_2, X_3, \ldots \)
- \(X_1 \indep \text{all others} \)

- Finest param
- High bias

Fully-connected graph

- \(X_1, X_2, X_3, X_4 \)
- No independence

- Structure learning
- Most param
- High variance
Review

- Bayesian Networks
 - Compact representation for probability distributions
 - Exponential reduction in number of parameters
- Fast probabilistic inference
 - As shown in demo examples
 - Compute $P(X|e)$
- Today
 - Learn BN structure

Flu → Allergy
Sinus
Headache → Nose
Learning Bayes nets

Data \(x^{(1)}\) … \(x^{(m)}\)

\[
\text{structure} \quad \text{parameters}
\]

\[
\text{MLE} \quad P(D \mid G, \Theta_c)
\]

Learning the CPTs

For each discrete variable \(X_i\)

\[
P(S = s \mid A = a, F = f) = \frac{\text{MLE} \ \text{Count}(s = s, a = a, f = f)}{\text{Count}(a = a, f = f)}
\]

\[
P(X_c = x_c \mid \text{Pa}_X = w) = \frac{\text{MLE} \ \text{Count}(x_c = x_c, \text{Pa}_X = w)}{\text{Count}(\text{Pa}_X = w)}
\]

Substitution:

\[
\text{Count}(\text{Pa}_X = w) = 0 \text{ or very small}
\]

→ add smoothing / L2 regularization / AKA Bayesian priors

MLE:

\[
P(X_i = x_i \mid X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}
\]
Information-theoretic interpretation of maximum likelihood 1

Given structure, log likelihood of data:

\[
\log P(\mathcal{D} | \theta_G, G) = \log \prod_{j=1}^{m} \prod_{i=1}^{N} P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})
\]

\[
= \sum_{i=1}^{N} \sum_{j=1}^{m} \log P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})
\]

\[
= \sum_{i=1}^{N} \sum_{x_{i,j} \in \mathcal{X}_{i,j}} \sum_{\text{Pa}_{x_{i,j}} \in \mathcal{U}_{i,j}} \log \frac{P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}{\sum_{x_{i,j}' \in \mathcal{X}_{i,j}} P(x_{i,j}'^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}
\]

\[
= \sum_{i=1}^{N} \sum_{x_{i,j} \in \mathcal{X}_{i,j}} \sum_{\text{Pa}_{x_{i,j}} \in \mathcal{U}_{i,j}} \log \frac{P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}{\sum_{x_{i,j}' \in \mathcal{X}_{i,j}} P(x_{i,j}'^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}
\]

\[
= \sum_{i=1}^{N} \sum_{x_{i,j} \in \mathcal{X}_{i,j}} \sum_{\text{Pa}_{x_{i,j}} \in \mathcal{U}_{i,j}} \log \frac{P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}{\sum_{x_{i,j}' \in \mathcal{X}_{i,j}} P(x_{i,j}'^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}
\]

\[
- \sum_{i=1}^{N} \mathcal{H}(X_i | \text{Pa}_{x_{i,j}})
\]

Information-theoretic interpretation of maximum likelihood 2

Given structure, log likelihood of data:

\[
\log P(\mathcal{D} | \theta_G, G) = \sum_{j=1}^{m} \sum_{i=1}^{N} \log P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})
\]

\[
= \sum_{i=1}^{N} \sum_{x_{i,j} \in \mathcal{X}_{i,j}} \sum_{\text{Pa}_{x_{i,j}} \in \mathcal{U}_{i,j}} \log \frac{P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}{\sum_{x_{i,j}' \in \mathcal{X}_{i,j}} P(x_{i,j}'^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}
\]

\[
= \sum_{i=1}^{N} \sum_{x_{i,j} \in \mathcal{X}_{i,j}} \sum_{\text{Pa}_{x_{i,j}} \in \mathcal{U}_{i,j}} \log \frac{P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}{\sum_{x_{i,j}' \in \mathcal{X}_{i,j}} P(x_{i,j}'^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}
\]

\[
= \sum_{i=1}^{N} \sum_{x_{i,j} \in \mathcal{X}_{i,j}} \sum_{\text{Pa}_{x_{i,j}} \in \mathcal{U}_{i,j}} \log \frac{P(x_{i,j}^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}{\sum_{x_{i,j}' \in \mathcal{X}_{i,j}} P(x_{i,j}'^{(j)} | \text{Pa}_{x_{i,j}} = \mathcal{U}_{i,j}^{(j)})}
\]

\[
- \sum_{i=1}^{N} \mathcal{H}(X_i | \text{Pa}_{x_{i,j}})
\]
Information-theoretic interpretation of maximum likelihood 3

- Given structure, log likelihood of data:

\[
\max_G \log \hat{P}(D \mid \theta, G) = m \sum_{i} \sum_{x_i, \text{pa}_G} \hat{P}(x_i, \text{pa}_G) \log \hat{P}(x_i \mid \text{pa}_G)
\]

\[
\leq \max_G -m \sum_{i} \sum_{x_i} H(x_i) \leq \min_{G} m \sum_{i} H(x_i)
\]

\[
\leq \max_G -m \sum_{i} \sum_{x_i} \mathcal{I}(x_i; \text{pa}_G) - m \sum_{i} H(x_i)
\]

Information Theoretic interpretation does not depend on G of MLE for \(\theta \)

\[
\Rightarrow \max_G \equiv \text{choosing parents with max mutual info with var}
\]

Decomposable score

- Log data likelihood

\[
\log \hat{P}(D \mid \theta, G) = m \sum_i \mathcal{I}(X_i, \text{pa}_G) - m \sum_i H(X_i)
\]

- Decomposable score:
 - Decomposes over families in BN (node and its parents)
 - Will lead to significant computational efficiency!!!
 - Score(\(G \mid D \)) = \(\sum_{X_i} \mathcal{I}(X_i; \text{pa}_G) \)

\[
\sum_{X_i} \mathcal{I}(X_i; \text{pa}_G)
\]
How many trees are there?

Nonetheless – Efficient optimal algorithm finds best tree

Every var has at most one parent

For n vars, how many possible trees?

O(n \log n)

Exhaustive search is impossible

Scoring a tree 1: equivalent trees

\[\log P(D \mid \theta, G) = m \sum_i \hat{I}(X_i, Pa_{X_i}, G) - m \sum_i \hat{H}(X_i) = \max_{E} \hat{I}(E_{\theta}, E_{G}) \]

No true for all edge directions:

A ↓ B ↣ ALC ∣ \emptyset

Not a tree, because B not a parent.
Scoring a tree 2: similar trees

\[
\log \hat{P}(D | \theta, G) = m \sum_i \hat{I}(X_i, \text{Pa}_X, G) - m \sum_i H(X_i)
\]

For each pair of variables \(X_i, X_j\):

- Compute empirical distribution:
 \[
 \hat{P}(x_i, x_j) = \frac{\text{Count}(x_i, x_j)}{m}
 \]
- Compute mutual information:
 \[
 \hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}
 \]

Define a graph:

- Nodes \(X_1, \ldots, X_n\)
- Edge \((i, j)\) gets weight \(\hat{I}(X_i, X_j)\)

A
down
B
down
C

Score = \(\hat{I}(A, B) + \hat{I}(B, C)\)

\[\text{Score} = \hat{I}(A, B) + \hat{I}(A, C)\]

Chow-Liu tree learning algorithm 1

- For each pair of variables \(X_i, X_j\):
 - Compute empirical distribution:
 \[
 \hat{P}(x_i, x_j) = \frac{\text{Count}(x_i, x_j)}{m}
 \]
 - Compute mutual information:
 \[
 \hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}
 \]
- Define a graph:
 - Nodes \(X_1, \ldots, X_n\)
 - Edge \((i, j)\) gets weight \(\hat{I}(X_i, X_j)\)

Run max spanning tree — complexity is about \(O(E \log E)\) or \(O(n^2 \log n)\).
Chow-Liu tree learning algorithm 2

\[\log \hat{P}(D \mid \theta, \mathcal{G}) = m \sum_i I(X_i, \text{Pa}_X, G) - m \sum_i \hat{H}(X_i) \]

Optimal tree BN

- Compute maximum weight spanning tree
- Directions in BN: pick any node as root, breadth-first-search defines directions