
CSE 546 Midterm Exam, Fall 2013

1. Personal info:

• Name:

• Student ID:

• E-mail address:

2. There should be 16 numbered pages in this exam (including this cover sheet).

3. You can use any material you brought: any book, class notes, your print outs of class
materials that are on the class website, including my annotated slides and relevant
readings. You cannot use materials brought by other students. Laptops, PDAs, phones
and Internet access are not allowed.

4. If you need more room to work out your answer to a question, use the back of the page
and clearly mark on the front of the page if we are to look at what’s on the back.

5. Work efficiently. Some questions are easier, some more difficult. Be sure to give yourself
time to answer all of the easy ones, and avoid getting bogged down in the more difficult
ones before you have answered the easier ones.

6. You have 80 minutes.

7. Good luck!

Question Topic Max score Score

1 True/False 20
2 Short Answer 20
3 Decision Trees 8
4 Linear Regression 12
5 Logistic Regression 14 + 6 extra
6 Boosting 14
7 MLE 12 + 4 extra

Total 100 + 10 extra
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1 [20 points, 2 points each] True/False (Explain in at

most 2 sentences)

1. true/false Using a model with less bias is always better than using a model with more
bias. Explain.

2. true/false Variance of a model typically decreases as the number of features increases.
Explain.

3. true/false With the correct step size, gradient descent always converges to the op-
timum of the objective function for linear regression if the optimum exists. Explain.

4. true/false Making predictions with locally weighted least squares requires significantly
more computation than making predictions with ordinary least squares. Explain.

5. true/false To predict the probability of an event, one would prefer a regression model
trained with squared error to a classifier trained with logistic regression.

6. true/false Consider a model trained with Lasso. Adding the “debiasing step” to im-
prove prediction quality generally helps more when the chosen regularization parameter
λ is large rather than small.

7. true/false A good criteria for stopping when learning decision trees is to stop when
the information gain is smaller than some value ε. Explain.

8. true/false In boosting, you can stop training weak classifiers if the error rate of the
combined classifier is 0 on the original training data. Explain.

9. true/false As the amount of data increases, the true error of 1-NN approaches 0,
assuming noise-free data. Explain.

10. true/false The perceptron algorithm is guaranteed to make a finite number of mis-
takes. Explain.
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2 [20 points] Short Answer

1. [3 points] Consider using decision trees in a classification problem with 2 classes. What
is the maximum training error that any dataset could possibly have? Explain with any
relevant drawings and at most 4 sentences.

2. [3 points] Draw a dataset with 5 labeled examples for which LOOCV classification error
on 1-NN is always 1 (1-NN gets it wrong every time). Use 2 classes. No explanation
is needed.
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3. [6 points] Suppose A, B, and C are binary attributes. Construct a dataset (by filling the
table below) where the greedy algorithm we learned will not find the decision tree with
minimum depth that achieves 0 training error. Construct a training set with no label
noise, and show a minimum depth tree and the tree found by the greedy algorithm.

A B C Class

4. [8 points] Consider the dataset in Figure 1. It has positive examples at

(2, 0), (0, 2), (1, 1), (
1√
2
,

1√
2

)

and negative examples at

(−2, 0), (0,−2), (−1,−1), (− 1√
2
,− 1√

2
)

Recall that perceptron is trained on a sequence of examples. On each example, the
weights are updated if perceptron makes a mistake in classifying that example.

Find a ordering of examples in this dataset on which perceptron makes at least 5
mistakes during training, or explain that no such sequence exists.
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Figure 1: Dataset for the question on perceptron.

5



3 [8 points] Decision Trees

The following dataset will be used to learn a decision tree for predicting if people will get
hired at a great company (Y) or not (N), based on their machine learning grade (High or
Low), their GPA (High or Low) and on whether or not they did an internship during their
PHD.

ML grade GPA Internship (output) Hired?
L H Y Y
L L N N
L L Y N
L L N N
H H Y Y
H L Y Y
H H N Y
H L N Y

1. [1 point] What is the entropy H(Hired | Internship = N)? Briefly justify.

2. [1 point] What is the entropy H(Hired | GPA = H)? Briefly justify.

3. [6 points] Draw the full decision tree that would be learned for this data (assuming no
pruning). You do not need to show the calculation of information gain.
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4 [12 points] Linear Regression

Consider a regression problem in which we want to predict variable y from a single feature
x. We have n ≥ 3 data points, (yi, xi)

n
i=1. Consider two possible models to be estimated by

ordinary linear regression,

yi = w0 + w1xi + εi (1)

yi = w0 + w1xi + w2x
2
i + εi (2)

As in lecture, the error terms εi are independent and identically distributed from a normal
distribution with zero mean.

1. [3 points] Derive a formula for estimating w2 in Model 2. Assume w0 and w1 are known.
Show your work.

2. [3 points] Will one model fit the training data better than the other, will they fit
equally well, or is it impossible to say? Explain your reasoning.
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3. [3 points] Will one model fit the testing data better than the other, will they fit equally
well, or is it impossible to say? Explain your reasoning.

4. [3 points] Assume the true model is either Model 1 or 2. What technique regarding a
change to the objective function of linear regression would be helpful in determining
whether Model 1 or Model 2 is the true model (i.e., w2 = 0)? Explain your reasoning.
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5 [14 points + 6 extra credit] Logistic Regression
In this question we will consider logistic regression in two dimensions with various types of
regularization. First, suppose we perform L2 regularization but the weights w1 and w2 are
not necessarily penalized equally. That is, our objective function is now

F (w, w0) =
∑
i

L(xi, yi,w, w0) + λ1w
2
1 + λ2w

2
2

where L(xi, yi,w, w0) is the logistic loss function for example (xi, yi) and the remaining terms
are regularization penalties.

Recall from class that yi ∈ {0, 1} (graphed as plus and circle, respectively) and

L(xi, yi,w, w0) = yi(w0 + wTxi) + ln(1 + exp(w0 + wTxi))

The graphs in the next page illustrate the data for this problem and will be used for
recording your answers.

1. [2 points] Suppose λ1 and λ2 are both small but nonzero. In Figure 2(a), draw the
decision boundary learned by logistic regression. No explanation is needed. (Note: for
all these problems, your solution need not be exact. We are just looking for the correct
points to be separated.)

2. [3 points] Now suppose λ1 and λ2 are both 0. Briefly explain (but do not draw) what
happens to the decision boundary, the weights w, and the value of F (w, w0).

3. [3 points] Now suppose λ1 is set to 0, but λ2 is a very, very large value. Briefly
explain what happens to the weights w and draw the resulting decision boundary in
Figure 2(b).
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(c) Decision boundary for (d) Decision boundary for

large λ1 and λ2 = 0 small λ1 and λ2 but large λ̃

Figure 2: Dataset for question 5 on logistic regression.

4. [3 points] Similarly, suppose λ2 is set to 0, but now λ1 is a very, very large value.
Briefly explain what happens to the weights w. Draw the resulting decision boundary
in Figure 2(c).
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5. [3 points] Now suppose that we are given additional prior knowledge about the weights
w. In addition to being small, we also believe w should be close to some given param-
eters w̃ and w̃0. In this case, these weights are

w̃0 = 0, w̃1 = −1, w̃2 = 1

To ensure our estimate stays close to w̃, we minimize the modified objective function
F̃ (w, w0) with an added regularization term:

F̃ (w, w0) =
∑
i

L(xi, yi,w, w0) + λ1w
2
1 + λ2w

2
2 + λ̃[‖w − w̃‖22 + (w0 − w̃0)

2]

Assume the regularization parameters are chosen such that λ1 and λ2 are both quite
small, but λ̃ is very, very large. Draw the resulting decision boundary in Figure 2(d).
You do not need to explain.

The remaining problems in this section (5.6 through 5.8) are extra credit.

6. [2 points extra credit] The objective function F̃ (w, w0) is useful in online learning,
where we have learned a weight vector ŵ(t) from t previous examples but then encounter
a new datapoint (x(t+1), y(t+1)). In order to to avoid storing previous examples in
memory, we update ŵ(t) by solving the following optimization problem with only the
new datapoint and previous solution:

ŵ(t+1) = arg min
w

L(x(t+1), y(t+1),w) + λ ‖w‖22 + λ̃
∥∥w − ŵ(t)

∥∥2
2

(For simplicity, we’re now ignoring the offset term w0.) This optimization problem is
convex. Name a technique that solves this problem. Explain in a couple of sentences.
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7. [2 points extra credit] Now assume in this case that λ̃ is large enough and L is smooth
enough that

∇[L(x(t+1), y(t+1), ŵ(t+1)) + λ
∥∥ŵ(t+1)

∥∥2
2
] ≈ ∇[L(x(t+1), y(t+1), ŵ(t)) + λ

∥∥ŵ(t)
∥∥2
2
]

Using this assumption, solve for an approximate update rule for ŵ(t+1) (by approxi-
mately solving the optimization problem above). Your result should be a closed-form
solution involving ∇L(x(t+1), y(t+1),w(t)).

8. [2 points extra credit] In roughly two sentences, describe how the update rule you just
derived above compares to the perceptron algorithm and stochastic gradient descent.
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6 [14 points] Boosting

Consider the small dataset in Figure 3. We’d like to learn a classifier to separate pluses from
circles using the AdaBoost algorithm. Each data point xi has a class yi ∈ {−1,+1}, where
−1 corresponds to circle and +1 to plus.

For this problem, we use weak learners with separating planes parallel to a particular
axis, i.e., the decision boundary for each classifier is either a vertical or horizontal line.
When training the new weak learner ht(x), we choose the split that maximizes the weighted
classification accuracy with respect to current weights Dt (i.e., choose ht that maximizes∑

iDt(i)δ(ht(xi) = yi)). Note that ht(x) only takes values in {−1,+1}, depending on
whether it classifies x as a circle or plus respectively.

x
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x
1

x
2

(a) Decision boundary after 1st iteration (b) Decision boundary after 2nd iteration

x
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x
2

x
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x
2

(c) Example with lowest weight (d) Example with highest weight

Figure 3: Dataset for question 6 on boosting.
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1. [2 points] Draw the boosting algorithm’s decision boundary after the first iteration
(after the first weak learner is chosen) on Figure 3(a). Don’t forget to mark which
parts of the plane get classified as “+” and which as “◦”. No explanation is needed.

2. [2 points] Now complete the second iteration of boosting. Draw the two decision
boundaries after the first two iterations in Figure 3(b). Mark which parts of the plane
are classified as “+” and “◦” by each classifier. No explanation is needed.

3. [5 points] In AdaBoost, we choose αt as the weight of the t-th weak learner, where

αt = 1
2

ln
(

1−εt
εt

)
and εt = Px∼Dt [ht(x) 6= y] (i.e. εt is the weighted fraction of examples

misclassified by the t-th weak learner). The update rule for the weight Dt(i) of example
i from step t to t+ 1 is

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalizing constant ensuring that the weights sum to 1 over examples.
Which is larger: α1 or α2? Show your work.

Hint:
√

3 ≈ 1.7, 1/
√

3 ≈ 0.6.
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4. [1 point] After two iterations of boosting, how many training examples are misclassi-
fied? No explanation is needed.

5. [1 point] Using Figure 3(c), mark the training example(s) with lowest weight (Dt) after
two iterations of boosting. No explanation is needed.

6. [1 point] Using Figure 3(d), mark the training example(s) with highest weight (Dt)
after two iterations of boosting. No explanation is needed.

7. [2 points] For this dataset, will Boosting ever achieve zero training error? Explain in
one or two sentences.
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7 [12 points + 4 extra credit] Maximum Likelihood

Estimation

Suppose we know a continuous random variable X is uniformly distributed between values
0 and a positive number c, but c is unknown. To help estimate c, we observe N independent
samples x1, x2, . . . , xN of X.

1. [2 points] Write the joint likelihood P (x1, x2, . . . , xN | c).

2. [6 points] Find the maximum likelihood estimate of c. Your answer should be a closed-
form solution for the estimate ĉ. Show your work.

3. [4 points] In this case, is the maximum likelihood biased or unbiased? Justify your
answer.

The following question is extra credit.

4. [4 points extra credit] Show that, given enough samples N , the estimate ĉ is within a
small ratio ε from the true parameter c with high probability. That is, ĉ satisfies

(1− ε)c ≤ ĉ ≤ (1 + ε)c

with high probability. How many independent samples N are required in order to make
this gaurantee with probability 1− δ?
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