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m Learn P(Y|X) directly
Assume a particular functional form for Iink(b,[} 0s
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Sigmoid applied to a linear function of the input
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Features can be @gisecrete or continuous!
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Optimizing concave function —
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m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent
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Update rule: Aw — nvwl(W)
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Gradient Ascent for L
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Gradient ascent algorithm: iterate until change < ¢
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The Cost, The Cost!!! Think about

__the cost... R by
I
m What's the cost of a gradient update step for LR???
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Learning Problems as Expectations
“

m  Minimizing loss in training data:

Given dataset: Y, (2 )(ﬂ j ik P()()

v
= Sampled iid from some dlstrlbutlon p(x) on features: X ~
Loss function, e.g., hinge loss, logistic loss, ..

We often m,nlm}elcm_s_lrly_a_mng.dda— J'l«mj:.k ly 4
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m However, we should really minimize expected loss on all data:

(w) = Bx [f(w.x)] = / p(x)0(w, X)dx

typchd b3S
m  So, we are approximating the integral by the average on the training data
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Gradient ascent in Terms of Expectations

“ J
m “True” objective function:

l(w) = Ex [l(w,x)] = /p(x)f(w,x)d:x

m Taking the gradient:
ORI TE AL

m “True” gradient@scent rule:
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m How do we estimate expected gradient?\ 25 { mxk L
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SGD: Stochastic Gradient Ascent (or Descent)
" JEE—
" True'gradient:  VI(w) = Ex [VE(w, )]

u Sample based apprOX|mat|on tale i Shmply
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m What if we estimate gradient with just one sample???
Unbiased estimate of gradient Ex[O L (v, ’a} ARV Q(w,)()
Very noisy! 3 1[0«4(( {4} Vo £ ()
Called stochastic gradient ascent (or descent)

= Among many other names

VERY useful in practice!!!
\“-—_\————\.
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Stochastic Gradient Ascent for "‘}‘f‘ﬁj&-*

_ Loaistic Reﬁression Min; butchy
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m Logistic loss as a stochastic function:

By [((w,x)] = Ex [In P(ylx, w) = Allwl[3]

m Batch gradient ascent updates: ‘/ e
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m Stochastic gradient ascent updates: £!° L6 'Jm
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Stochastic Gradient Qscent:

_ general case

m Givena stochastlc function of parameters: ‘F (“U) €X (..‘f (o X)l

Want to find manmum
4?;;:‘\ E;( L’F(“U’y)]

w* € Arpin £ilw)

[\

Startfromw©® £.¢, LW ®:o
Repeat until convergence:
Get a sample data point xt
Update parameters:

witt) — o _ T Q.f(w,)(“")

m  Works on the online learning setting!
Complexity of each gradient step is constant in number of examples!

m In general, step size changes with |terat|ons robla 0
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What you should know...
" JE
m Classification: predict discrete classes rather than

real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent

Boosting
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Fighting the bias-variance tradeoff
" S

m Simple (a.k.a. weak) learners are good
e.g., naive Bayes, logistic regression, decision stumps
(or shallow decision trees)
Low variance, don’t usually overfit too badly
- /_’-‘-—_
m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

mmN—,—
m Can we make weak learners always good???

No!!!

But often yes...
~—————

©Carlos Guestrin 2005-2013

Voting (Ensemble Methods)
" JEE

m  Instead of learning a single (weak) classifier, learn many weak classifiers that are
good at different parts of the input space h: X \/ ¢ {-' } ,7
m  Output class: (Weighted) vote of each classifier !
Classifiers that are most “sure” will vote with more conviction
Classifiers will be most “sure” about a partlcular part of the space

On average, do better than single classifier! 1y o
* e\ v clasde

H X) z Sl:)h (i_‘ ol¢ l\{ (%) " w“_]k‘)

H 14 x,-1 i i) by A TETHL
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m  But how do you ???

force classifiers to learn about different parts of the input space?

weigh the votes of different classifiers?
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Boosting [Schapire, 1989]

m |dea: given a weak Iearr@r, run it multiple times on (reweighted)

training data, then let learned classifiers vote
WA TR 5 hib) >0 =) twnct ch
m On each iteration t: ) ‘\{: (1‘) <0 o) incorgect claJs
weight each training example by how incorrectly it was classified
Learn a h)}pothe§i§ - h, dh creas ~eigh

A strength for this hypothesis — o e

> teh ()) Pl
m Final classifier: _ i Y X 7
l—-\ ()‘) = Jj" (:L:'t ¢ d,‘&-u'”_
,9(.;'0/

m Practically useful 7
Tee

m Theoretically interesting
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m Sometimes not all data points are equal
Some data points are more equal than others
m Consider a weighted dataset

D(j) — weight of jth training example (xi,y)
Interpretations:

= jth training example counts as D(j) examples
n If | were to “resample” data, | would get more samples of “heavier” data points

m Now, in all calculations, whenever used, jth training example counts as
D(j) “examples”
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AdaBoost lw\;f-vm i
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m |nitialize weights to uniform dist: D,(j) = 1/N o taishl
m Fort=1...T ¢ Fotuyd o6n ’mh et hoon ‘rljl‘ 3
0 Train weak learner h, on distribution D, over the datal ﬂf‘ -‘“’ro&- d¢do
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= Where Z, is normalizer:

sbm ]ZlDt exp(—ay’ hy(a))

m  Output final cla35|f|er
TR AR
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Picking Weight of Weak Learner
" SN
m Weigh h, higher if it did well on training data

(weighted by D,): G0 D) by petdin
Lv'qM ik
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€t
’) "(f: {60
e T
if 2 5&>0 &zl ) hy pckictly Yrong
2 O<dg < 4o NVdy @
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
* JEEE—

Training error of final classifier is bounded by:
"‘ﬂ"‘c}lu 1 i . .
povialls S UER S SROE
¥ (fe.sslf, J 1

Where f(z) = Zatht(x); H(x) = sign(f(x))
" t
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Why choose ¢, for hypothesis 4, this way?
[Schapire, 1989]

N
Training error of final classifier is bounded by: 4t = ZDt(J)eXP( ay’hu(a’)
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Where f(z) = athi(x); H(x) = sign(f(x)) f
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
" JEE

Training error of final classifier is bounded by:

Z]l H(x7) # 4] <—Zexp —? f(z9))
]:1

Where f(z) =) athi(z); H(fc) = sign(f(z))
t

||’:]H

If we minimize []; Z,, we minimize our training error

ARt
Weear tightens this bound greedily, by choosing ¢, and #, on each
iteration to minimize Z,

N

Zy = Z Dy(j) exp(—azy’ he(a7))
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Why choose ¢ for hypothesis #, this way?
[Schapire, 1989]
* JEEE—
We can minimize this bound by choosing ¢; on each iteration to minimize Z,
N A diaka
Z=Y_ Dii)esp(-au’ (@) & St by

Jj=1
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For boolean target function, this is accomplished by [Freund & Schapire ’97]
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You'll prove this in your homework! ©
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