Naive Bayes and Bayesian Networks
Naive Bayes Background

- Classification algorithm
- Requires discrete features
- Popular, fast, easy to implement
- Versatile: text classification, weather, computer vision
- Performs well even when main assumption is violated
Naive Bayes Details

- Classification rule: choose most likely label given features:
 - Pick y to max $P(y | x) = P(x | y) P(y) / P(x)$ [Bayes]
 - Equivalent to maximizing $P(y, x) = P(x | y) P(y)$
- Assume conditional independence of features x
 - $P(x_1, x_2, x_3 | y) = P(x_1 | y) P(x_2 | y) P(x_3 | y)$
 - If no conditional independence, given d binary features and binary y, what is the order of the number of parameters needed to know $P(x | y)$ for all possible x and y?
 - Order of the number of parameters with conditional independence?
Prior and Likelihood

• Final classification rule: \(\text{max } P(y) \ \text{Prod}[P(x_i \mid y)] \)
• Prior \(P(y) = \frac{\# y}{N} \)
 - Fraction of examples with label \(y \)
• Likelihood \(P(x_i \mid y) = \frac{\# y \text{ and } x_i}{\# y} \)
 - Among examples with label \(y \), the fraction whose i-th feature equals the value \(x_i \)
Naive Bayes Example

- Label y: does the patient have lung cancer?
 - $1 = \text{yes}$, $0 = \text{no}$
- Features x_1, x_2:
 - x_1 whether the patient smokes
 - x_2 whether any family member has had lung cancer
 - Are they conditionally independent realistically?
NB Example

- 3 training examples
 - 1. has cancer, smokes, family does not have cancer
 - 2. has cancer, does not smoke, family has cancer
 - 3. no cancer, does not smoke, family does not have cancer

- Classify the following:
 - 4. smokes, family has cancer
 - 5. does not smoke, family has cancer

- Note “smoothing” issue
Bayesian Network Background

- AKA Bayes Net
- Graphical model on a directed acyclic graph
- Generalizes Naive Bayes and logistic regression
- Fast
- For inferring the most likely explanation of an outcome
Bayes Net Details

- Nodes = variables
- Edges = dependencies
- Conditional independence assumption: Given all parents of node v, v is independent of non-descendants
- Parameters are the conditional probability tables (CPTs) of a variable given all combinations of its parents
Bayes Net Example

• Joint: \(P(C,S,R,W) = P(C) \cdot P(R|C) \cdot P(S|C) \cdot P(W|R,S) \)

• \(P(C=t | W=t, R=f, S=t) = ? \)

• \(P(C=t | W=t, R=f) = ? \)
 - Inferring variable from evidence
 - Could also infer most likely situation
Naive Bayes as Bayes Net
Efficiency of Bayes Net

- Assume binary variables
- For a node with k parents, what is the order of the number of parameters for its CPT?
- If there are n nodes with at most k parents, what is the order of the total number of parameters?
- If there was no conditional independence, what would be the order of the total number of parameters?