Other application of EM

Marco Tulio Ribeiro

November 12th, 2013

Layout

EM for binomial

Seting

- Source: "What is the expectation maximization algorithm", Do and Batzoglou

Seting

- Source: "What is the expectation maximization algorithm", Do and Batzoglou
- Setting:
- Two coins, A and B
- Land on heads with $P=\theta_{A}, \theta_{B}$.

Seting

- Source: "What is the expectation maximization algorithm", Do and Batzoglou
- Setting:
- Two coins, A and B
- Land on heads with $P=\theta_{A}, \theta_{B}$.
- Choose one coin at random (50\%), perform 10 tosses, record results

Seting

- Source: "What is the expectation maximization algorithm", Do and Batzoglou
- Setting:
- Two coins, A and B
- Land on heads with $P=\theta_{A}, \theta_{B}$.
- Choose one coin at random (50\%), perform 10 tosses, record results
- Do this five times.

$$
\begin{aligned}
& \text { HTTTHHTHTH } \\
& \text { HHHHTHHHHH } \\
& \text { HTHHHHHTHH } \\
& \text { HTHTTTHHTT } \\
& \text { THHHTHHHTH }
\end{aligned}
$$

Formality

- $z=1$ means coin A was chosen.
- Let $y_{i} \in Y$ be the number of heads in the sequence.
- For a single sequence of 10 tosses:

$$
P\left(y_{i}, z \mid \theta\right)= \begin{cases}.5 *\binom{10}{y_{i}} \theta_{A}^{y_{i}}\left(1-\theta_{A}\right)^{10-y_{i}} & \text { if } z=1 \tag{1}\\ .5 *\binom{10}{y_{i}} \theta_{B}^{y_{i}}\left(1-\theta_{B}\right)^{10-y_{i}} & \text { if } z=0\end{cases}
$$

If we knew z...

$$
\begin{array}{r}
L(\theta \mid Y, z)=\prod_{i=1}^{5}\left(.5 *\binom{10}{y_{i}} \theta_{A}^{y_{i}}\left(1-\theta_{A}\right)^{10-y_{i}}\right)^{z_{i}} * \\
\left(.5 *\binom{10}{y_{i}} \theta_{B}^{y_{i}}\left(1-\theta_{B}\right)^{10-y_{i}}\right)^{1-z_{i}}
\end{array}
$$

If we knew z...

- Ignoring the binomial term:

$$
\begin{array}{r}
l(\theta \mid Y, z)= \\
\sum_{i=1}^{5} z_{i}\left(\log (.5)+y_{i} \log \left(\theta_{A}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{A}\right)\right)+ \\
\left(1-z_{i}\right)\left(\log (.5)+y_{i} \log \left(\theta_{B}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{B}\right)\right)
\end{array}
$$

MLE with we knew z .

$$
\hat{\theta_{A}}=
$$

MLE with we knew z.

$$
-\hat{\theta_{A}}=\frac{\sum_{i=1}^{5} z_{i} y_{i}}{10 \sum_{i=1}^{i} z_{i}}
$$

MLE with we knew z.

- $\hat{\theta_{A}}=\frac{\sum_{i=1}^{5} z_{i} y_{i}}{10 \sum_{i=1}^{i} z_{i}}$
- $\hat{\theta_{B}}=$

MLE with we knew z.

- $\hat{\theta_{A}}=\frac{\sum_{i=1}^{5} z_{i} z_{i}}{10 \sum_{i=1}^{i} z_{i}}$
- $\hat{\theta_{B}}=\frac{\sum_{i=1}^{i}\left(1-z_{1}\right) y_{i}}{10 \sum_{i=1}^{i}\left(1-z_{i}\right)}$

Sure enough

a Maximum likelihood

- HTTTHHTHTH HHHHTHHHHH HTHHHHHTHH HTHTTTHHTT THHHTHHHTH 5 sets, 10 tosses per set

Coin A Coin B

$5 \mathrm{H}, 5 \mathrm{~T}$

$9 \mathrm{H}, 1 \mathrm{~T}$
$8 \mathrm{H}, 2 \mathrm{~T}$
4 H, 6 T
$\hat{\theta}_{A}=\frac{24}{24+6}=0.80$
$\hat{\theta}_{B}=\frac{9}{9+11}=0.45$

7 H, 3 T

$24 \mathrm{H}, 6 \mathrm{~T} 9 \mathrm{H}, 11 \mathrm{~T}$

We don't have z, though.

- Marginalizing Z out:

$$
L(\theta \mid Y)=\prod_{i=1}^{5} \sum_{z \in(0,1)} P\left(y_{i}, z_{i} \mid \theta\right)
$$

We don't have z, though.

- Marginalizing Z out:

$$
L(\theta \mid Y)=\prod_{i=1}^{5} \sum_{z \in(0,1)} P\left(y_{i}, z_{i} \mid \theta\right)
$$

- Which is equal to:

$$
\begin{array}{rl}
\prod_{i=1}^{5} .5 & *\left(\binom{10}{y_{i}} \theta_{A}^{y_{i}}\left(1-\theta_{A}\right)^{10-y_{i}}\right)+ \\
.5 & *\left(\binom{10}{y_{i}} \theta_{B}^{y_{i}}\left(1-\theta_{B}\right)^{10-y_{i}}\right)
\end{array}
$$

Enter EM

- This function is usually hard to optimize

Enter EM

- This function is usually hard to optimize
- So we'll use EM.

Enter EM

- This function is usually hard to optimize
- So we'll use EM.
- Intuition: make z a random variable and take its expected value (given a current θ as truth.
- Then optimize over θ, and repeat.

Let's reason about z

$$
P(z \mid Y, \theta)=\prod_{i=1}^{5} P\left(z_{i} \mid y_{i}, \theta\right)=\prod_{i=1}^{5} \frac{P\left(y_{i}, z_{i} \mid \theta\right)}{P\left(y_{i} \mid \theta\right)}
$$

Let's reason about z

$$
P(z \mid Y, \theta)=\prod_{i=1}^{5} P\left(z_{i} \mid y_{i}, \theta\right)=\prod_{i=1}^{5} \frac{P\left(y_{i}, z_{i} \mid \theta\right)}{P\left(y_{i} \mid \theta\right)}
$$

- Since we don't know z, let's leave it as a random variable and take its expected value

Let's reason about z

$$
P(z \mid Y, \theta)=\prod_{i=1}^{5} P\left(z_{i} \mid y_{i}, \theta\right)=\prod_{i=1}^{5} \frac{P\left(y_{i}, z_{i} \mid \theta\right)}{P\left(y_{i} \mid \theta\right)}
$$

- Since we don't know z, let's leave it as a random variable and take its expected value
- We'll calculate the expected value of the log-likelihood leaving everything fixed but z. This is step one of EM.

New log likelihood

-

$$
E\left[l(\theta \mid Y, Z) \mid Y=y, \theta_{0}\right]=
$$

$$
\begin{aligned}
& \sum_{i=1}^{5} E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]\left(\log (.5)+y_{i} \log \left(\theta_{A}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{A}\right)\right)+ \\
& E\left[\left(1-z_{i}\right) \mid Y_{i}=y_{i}, \theta_{0}\right]\left(\log (.5)+y_{i} \log \left(\theta_{B}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{B}\right)\right)
\end{aligned}
$$

- Note that I substituted z_{i} for $E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]$.

New log likelihood

-

$$
E\left[l(\theta \mid Y, Z) \mid Y=y, \theta_{0}\right]=
$$

$$
\begin{aligned}
& \sum_{i=1}^{5} E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]\left(\log (.5)+y_{i} \log \left(\theta_{A}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{A}\right)\right)+ \\
& E\left[\left(1-z_{i}\right) \mid Y_{i}=y_{i}, \theta_{0}\right]\left(\log (.5)+y_{i} \log \left(\theta_{B}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{B}\right)\right)
\end{aligned}
$$

- Note that I substituted z_{i} for $E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]$.
- Only z is random, so I was able to push the expectation inside.

What's $E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]$?

- z_{i} is a binary random variable, so

$$
\begin{gathered}
E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]=P\left(z_{i}=1 \mid Y_{i}=y_{i}, \theta_{0}\right)= \\
P\left(z_{i}=1, Y_{i}=y_{i} \mid \theta_{0}\right) \\
\frac{P\left(z_{i}=1, Y_{i}=y_{i} \mid \theta_{0}\right)+P\left(z_{i}=0, Y_{i}=y_{i} \mid \theta_{0}\right)}{.5 * \theta_{0 A}^{y_{i}}\left(1-\theta_{0 A}\right)^{10-y_{i}}}= \\
\frac{.5 * \theta_{0 A}^{y_{i}}\left(1-\theta_{0 A}\right)^{10-y_{i}}+.5 * \theta_{0 B}^{y_{i}}\left(1-\theta_{0 B}\right)^{10-y_{i}}}{}
\end{gathered}
$$

- I ommited the binomial terms.

Step one: Expectation

- Since we know $E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]$ we can calculate $E\left[l\left(\theta \mid Y=y, \theta_{0}\right)\right]$ for arbitrary θ values.
- Let's denote:

$$
Q\left(\theta \mid \theta_{0}, Y\right)=E\left[l\left(\theta \mid Y=y, \theta_{0}\right)\right]
$$

Step two: maximization

- In step two, we find the value of θ that maximizes $Q\left(\theta \mid \theta_{0}, Y\right)$
- Let $E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]=E\left(z_{i}\right)$. MLE becomes:
- $\hat{\theta_{A}}=$

Step two: maximization

- In step two, we find the value of θ that maximizes $Q\left(\theta \mid \theta_{0}, Y\right)$
- Let $E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]=E\left(z_{i}\right)$. MLE becomes:
- ${\hat{\theta_{A}}}_{A}=\frac{\sum_{i=1}^{5} E\left(z_{i}\right) y_{i}}{10 \sum_{i=1}^{5} E\left(z_{i}\right)}$

Step two: maximization

- In step two, we find the value of θ that maximizes $Q\left(\theta \mid \theta_{0}, Y\right)$
- Let $E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]=E\left(z_{i}\right)$. MLE becomes:
$-\hat{\theta}_{A}=\frac{\sum_{i=1}^{5} E\left(z_{i}\right) y_{i}}{10 \sum_{i=1}^{5} E\left(z_{i}\right)}$
$-\hat{\theta}_{B}=$

Step two: maximization

- In step two, we find the value of θ that maximizes $Q\left(\theta \mid \theta_{0}, Y\right)$
- Let $E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]=E\left(z_{i}\right)$. MLE becomes:

$$
\begin{aligned}
& \hat{\theta_{A}}=\frac{\sum_{i=1}^{5} E\left(z_{i}\right) y_{i}}{10 \sum_{i=1}^{5} E\left(z_{i}\right)} \\
& \hat{\theta_{B}}=\frac{\sum_{i=1}^{5}\left(1-E\left(z_{i}\right)\right) y_{i}}{10 \sum_{i=1}^{5}\left(1-E\left(z_{i}\right)\right)}
\end{aligned}
$$

Going back to the example

b Expectation maximization

Doing one iteration

- They begin with $\theta_{A}=.6, \theta_{B}=.5$

Doing one iteration

- They begin with $\theta_{A}=.6, \theta_{B}=.5$
- $Y=(5,9,8,4,7)$

Doing one iteration

- They begin with $\theta_{A}=.6, \theta_{B}=.5$
- $Y=(5,9,8,4,7)$
- This yieds

$$
\begin{aligned}
& E\left[z \mid Y, \theta_{0}\right]=(0.44914893,0.80498552, \\
& 0.73346716,0.35215613,0.64721512)
\end{aligned}
$$

Doing one iteration

- They begin with $\theta_{A}=.6, \theta_{B}=.5$
- $Y=(5,9,8,4,7)$
- This yieds

$$
E\left[z \mid Y, \theta_{0}\right]=(0.44914893,0.80498552
$$

$$
0.73346716,0.35215613,0.64721512)
$$

-What does this mean?

Python code

```
def main():
    Y = np.array([5, 9, 8, 4, 7])
    theta_hat = np.array([.6, .5])
    previous = theta_hat.copy()
    pi = np.array([.5, .5])
    while True:
    # E-step
    pzi1 = pi[0] * theta_hat[0] ** Y * (1 - theta_hat[0]) ** (10 - Y)
    pzi0 = pi[1] * theta_hat[1] ** Y * (1 - theta_hat[1]) ** (10 - Y)
    ezk = pzil / (pzi0 + pzi1)
    # M - step
    theta_hat[0] = sum(ezk * Y) / (10 * sum(ezk))
    theta_hat[1] = sum((1 - ezk) * Y) / (10 * sum((1 - ezk)))
    # print ezk
    # print theta_hat
    if (theta_hat == previous).all():
            break
    previous = theta_hat.copy()
    print theta_hat
```

- Output: $\hat{\theta_{A}}=0.79678907, \hat{\theta_{B}}=0.51958312$

What happens if π is not $(.5, .5) ?$

$$
E\left[l(\theta \mid Y, Z) \mid Y=y, \theta_{0}\right]=
$$

$$
\begin{array}{r}
\sum_{i=1}^{5} E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]\left(\log \left(\pi_{0}\right)+y_{i} \log \left(\theta_{A}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{A}\right)\right)+ \\
E\left[\left(1-z_{i}\right) \mid Y_{i}=y_{i}, \theta_{0}\right]\left(\log \left(1-\pi_{0}\right)+y_{i} \log \left(\theta_{B}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{B}\right)\right)
\end{array}
$$

What happens if π is not $(.5, .5) ?$

$$
E\left[l(\theta \mid Y, Z) \mid Y=y, \theta_{0}\right]=
$$

$$
\begin{array}{r}
\sum_{i=1}^{5} E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{0}\right]\left(\log \left(\pi_{0}\right)+y_{i} \log \left(\theta_{A}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{A}\right)\right)+ \\
E\left[\left(1-z_{i}\right) \mid Y_{i}=y_{i}, \theta_{0}\right]\left(\log \left(1-\pi_{0}\right)+y_{i} \log \left(\theta_{B}\right)+\left(10-y_{i}\right) \log \left(1-\theta_{B}\right)\right)
\end{array}
$$

$$
\begin{array}{r}
E\left[z_{i} \mid Y_{i}=y_{i}, \theta_{i}\right]=P\left(z_{i}=1 \mid Y_{i}=y_{i}, \theta_{0}\right)= \\
\frac{\pi_{0} * \theta_{0 A}^{y_{i}}\left(1-\theta_{0 A}\right)^{10-y_{i}}}{\pi_{0} * \theta_{0 A}^{y_{i}}\left(1-\theta_{0 A}\right)^{10-y_{i}}+\left(1-\pi_{0}\right) * \theta_{0 B}^{y_{i}}\left(1-\theta_{0 B}\right)^{10-y_{i}}}
\end{array}
$$

Reasoning about π

- What's the MLE for π_{0} when we know the labels z ?

Reasoning about π

- What's the MLE for π_{0} when we know the labels z ?
- $\hat{\pi}_{0}=\frac{\sum_{i=1}^{5} z_{i}}{5}$

Reasoning about π

- What's the MLE for π_{0} when we know the labels z ?
- $\hat{\pi}_{0}=\frac{\sum_{i=1}^{5} z_{i}}{5}$
- And when we don't know the labels?

Reasoning about π

- What's the MLE for π_{0} when we know the labels z ?
- $\hat{\pi}_{0}=\frac{\sum_{i=1}^{5} z_{i}}{5}$
- And when we don't know the labels?
- $\hat{\pi}_{0}=\frac{\sum_{i=1}^{5} E\left(z_{i}\right)}{5}$

Reasoning about π

- What's the MLE for π_{0} when we know the labels z ?
- $\hat{\pi}_{0}=\frac{\sum_{i=1}^{5} z_{i}}{5}$
- And when we don't know the labels?
- $\hat{\pi}_{0}=\frac{\sum_{i=1}^{5} E\left(z_{i}\right)}{5}$

