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Linear Separability: More formally, Using Margin
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Perceptron Analysis: Linearly Separable Case
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= Theorem [Blgock, Novikoff]: {{(l)l ‘j“)) . (X ) gU)

Given d'Sequence of labeled examples:
rot iid
Each feature vector ha?,))ounded norm:
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If dataset is linearly separable: "
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m  Then the number of mistakes made by the online perceptron on any such sequence

is bounded by
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Beyond Linearly Separable Case
" JE

m  Perceptron algorithm is super cool!

No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid ~ 7

Makes a fixed number of mistakes, and it's
done for ever!

= Even if you see infinite data
CEEp—

m  However, real world not linearly separable

Can’t expect never to make mistakes again

Analysis extends to non-linearly separable
case

Very similar bound, see Freund & Schapire

Converges, but ultimately may not give good
accuracy (mak(imany many many mistakes)
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What if the data is not linearly separable?

Use features of features
of features of features....
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Feature space can get really. large realiy quickly!,

Higher order polynomials
" S

num. terms =(

d+m—1Y) _ (d+m—1)!
d  di(m — 1)!

m — input features
d — degree of polynomial
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number of input dimensions ™ d=6, m=100
about 1.6 billio
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Perceptron Revisited
* JEEE—

m Given weightnvector w(®, predict point x by:

9 = s (w0

m Mistake at time t: wi*") € w® + yO xO

-y Pt .ﬁ, S;.?l"'
m  Thus, write weight vector in terms of mistaken data points only:\.,“’:o b
® i i :
1 Let MO be time steps up to t when mistakes were made: o-.\, d«r.,d; w Ak
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Dot-product of polynomials (3. )
d(u) - P(v) = polynomials of degree exactly d

do cp(u)~¢(\/) ._(:‘). (V1): WYy, 4+t v, = WV
A

vl | 2 Wvle Twuguive dud vl

A1 (w00 - wr

Uil W 3 )t = (wl
U,y Vv, l (U{ ' t ‘)
\&1i V:

prua{ Luj S'w\)‘/. of 1 due iy,
' v
For ()a(aj of }-‘j"l aﬂ"“a A ! = K(w V)

onl 4y ok ) }

©Carlos Guestrin 2005-2013 8




Finally the Kernel Trick!!!
(Kernelized Perceptron

m Every time you make a mistake, remember (x®,y®)
Loy inde b of el mishle vpb diey

m Kernelized Perceptron prediction for x:

M > yVo(x) - g(x)
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Z y(j)k(x(j),x)
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Polynomial kernels
" JEE

m All monomials of degree d in O(d) operations:
d(u)-P(v) = (uv)? = polynomials of degree exactly d

m How about all monomials of degree up to d?

Solution 0: (h(w)- oM - éo( ) (R')

Better solution:
(uy) + (ww)! &(VV)'-\(‘/) = (A\H"
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FRNELS ARE
Common kernels AV FEE22 7
* JEE—
m Polynomials of degree exactly d
K(u,v) = (u-v)?
m Polynomials of degree up to d

_ d ,‘LI basi M"
K(uv)=(u-v+1) ?—‘*ép bl

m Gaussian (squared exponential) kernel Covsian sem

u—v )
K(u,v) = exp (—H 552 | G infinik din fed
m Sigmoid Spr i

K(u,v) =tanh(gu-v 4+ v)

What you need to know
* JEE——
m Notion of online learning
m Perceptron algorithm
m Mistake bounds and proofs
m The kernel trick
m Kernelized Perceptron
m Derive polynomial kernel
m Common kernels
m |n online learning, report averaged weights at the end
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Your Midterm...
“
m Content: Everything up to last Wednesday (Perceptron)...
m Only 80mins, so arrive early and settle down quickly, we’ll
start and end on time
“Open book”
Textbook, Books, Course notes, Personal notes, ‘jﬂv-"
Bring a calculator that can do log ©
= No:

Computers, tablets, phones, other materials, internet devices, wireless
telepathy or wandering eyes...

The exam:

Covers key concepts and ideas, work on understanding the big
picture, and differences between methods

Hws
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Linear classifiers — Which line is better?
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Pick the one with the largest margin!
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Maximize the margin " ~ o/
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Review. Normal to a plane
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Margin maximization using "
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. £ = miaf
nonical hyperplanes
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y(w-x) +w) >1,Vje{l,...,N}
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Support vector machines (SVMs)
"

min [}
,Wo

y(w-x) +w) > 1,Vj€{l,...,N}

I -
I

- - m Solve efficiently by many methods,
e.g.,
quadratic programming (QP)
= Well-studied solution algorithms

Stochastic gradient descent

m Hyperplane defined by support
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What if the data is not linearly

. iggaraglg’?

Use features of features
of features of features....

What if the data is still not linearly
separable?

min - [[wl[3
W,Wo

yj(w-xj—i—wo)zl ,V7

c\ﬂk(g)"’)%% - _ = [fdatais not linearly separable, some
= points don’t satisfy margin constr_ainS
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SVMs for Non-Linearly Separable meet
my friend the Perceptron...

m Perceptron was minimizing the hinge loss:

N

Z (—y (w-x’ + wo))+

=1

’ L\ing( L‘SS
m  SVMs minimizes the regularized hinge loss!!

N ¢ (onvpakpn in fUn;
(w3 +C ) (14 (w-x +w)),
Yoo
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Stochastic Gradient Descent for SVMs

m Perceptron minimization: m  SVMs minimization:
N

N
S (P w e ) Wl +C Y (1 =y (w e + wo)),
j=1 Jj=1
m SGD for Perceptron: m SGD for SVMs:
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What you need to know
* JEE
m Maximizing margin
m Derivation of SVM formulation

m Non-linearly separable case
Hinge loss
A.K.A. adding slack variables

m SVMs = Perceptron + L2 regularization
m Can also use kernels with SVMs

m Can optimize SVMs with SGD
Many other approaches possible
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