

What if the data is not linearly separable?

Use features of features of features...

$$\Phi(\mathbf{x}): R^m \mapsto F$$

$$\phi(\mathbf{x}): \begin{pmatrix} \mathbf{x} \\ \mathbf{x$$

Perceptron Revisited

Given weight vector $\mathbf{w}^{(t)}$, predict point \mathbf{x} by: $\mathbf{y} = \mathbf{y} \cdot (\mathbf{w}^{(t)} \cdot \mathbf{y})$

Mistake at time t: $w^{(t+1)} \leftarrow w^{(t)} + y^{(t)} x^{(t)}$

Thus, write weight vector in terms of mistaken data points only: w⁽⁴⁾

 \Box Let M^(t) be time steps up to *t* when mistakes were made:

 $w^{(i)} = \sum_{j \in M(i)} y^{(i)} \chi^{(j)}$ Prediction rule now: $Sign(\chi, \omega^{(i)}) = Sign(\chi, \sum_{j \in M(i)} y^{(j)} \chi^{(j)}) = Sign(\sum_{j \in M(i)} y^{(j)} \chi^{(j)})$

When using high dimensional features:

Sign
$$(\phi(x), w^{(4)}) = \text{Sign}(\sum_{j \in M(4)} y^{(j)}) \phi(x) \cdot \phi(x^{(j)})$$

(an often often of the physical strength of th

Dot-product of polynomials V= (V)

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) \stackrel{h}{\Rightarrow}$ polynomials of degree exactly d

Finally the Kernel Trick!!! (Kernelized Perceptron

Kernelized Perceptron prediction for x:

$$\underbrace{sign(\mathbf{w}^{(t)} \cdot \phi(\mathbf{x}))}_{g} = \sum_{j \in M^{(t)}} y^{(j)} \phi(\mathbf{x}^{(j)}) \cdot \phi(\mathbf{x})$$

$$= \sum_{j \in M^{(t)}} y^{(j)} k(\mathbf{x}^{(j)}, \mathbf{x})$$

Polynomial kernels

■ All monomials of degree d in O(d) operations:

 $\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$ polynomials of degree exactly d

■ How about all monomials of degree up to d?

□ Solution 0:
$$\phi(4) \cdot \phi(7) = \sum_{i=0}^{n} {n \choose i} ((1.4)^{n})^{i}$$

Better solution:
$$(u \cdot v)^{1} + (u \cdot v)^{2} + (v \cdot u)^{1} + (u \cdot v)^{0} = (u \cdot v + 1)^{2}$$

$$proof by "induction"
$$\phi(u) \cdot \phi(v) = K(u, v) = (u \cdot v + 1)^{d}$$

$$vow !!$$$$

Common kernels

MANY KERNELS ARE

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

• Polynomials of degree up to d
$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u}\cdot\mathbf{v}+1)^d \qquad \text{Ref kind}$$
• Gaussian (squared exponential) kernel
$$K(\mathbf{u},\mathbf{v}) = \exp\left(-\frac{||\mathbf{u}-\mathbf{v}||^2}{2\sigma^2}\right) \qquad \text{for finite dim facts}$$
• Sigmoid
$$K(\mathbf{u},\mathbf{v}) = \tanh(\eta\mathbf{u}\cdot\mathbf{v}+\nu)$$

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

What you need to know

- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proofs
- The kernel trick
- Kernelized Perceptron
- Derive polynomial kernel
- Common kernels
- In online learning, report averaged weights at the end

Your Midterm...

- Content: Everything up to last Wednesday (Perceptron)...
- Only 80mins, so arrive early and settle down quickly, we'll start and end on time
- "Open book"
 - □ Textbook, Books, Course notes, Personal notes, Your
- Bring a calculator that can do log ☺
- No:
 - □ Computers, tablets, phones, other materials, internet devices, wireless telepathy or wandering eyes...
- The exam:
 - □ Covers key concepts and ideas, work on understanding the big picture, and differences between methods

©Carlos Guestrin 2005-2013

13

7

SVMs for Non-Linearly Separable meet my friend the Perceptron...

SVMs minimizes the regularized hinge loss!!

SVMs minimizes the regularized hinge loss!!
$$||\mathbf{w}||_2^2 + C \sum_{j=1}^N \left(1 - y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0)\right)_+$$
 (Gn/a) Taken

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Non-linearly separable case
 - ☐ Hinge loss
 - □ A.K.A. adding slack variables
- SVMs = Perceptron + L2 regularization
- Can also use kernels with SVMs
- Can optimize SVMs with SGD
 - ☐ Many other approaches possible

©2005-2007 Carlos Guestrin

27