What’s learning? Point Estimation

Machine Learning – CSE546
Carlos Guestrin
University of Washington
September 25, 2013

What is Machine Learning?
Machine Learning

Study of algorithms that
- improve their **performance**
- at some **task**
- with **experience**

Data → Machine Learning → Understanding

Classification

from data to discrete classes
Spam filtering

Text classification

Company home page
 vs
Personal home page
 vs
Univeristy home page
 vs
 ...
Object detection

(Prof. H. Schneiderman)

Example training images for each orientation

Reading a noun (vs verb)

[Rustandi et al., 2005]
Weather prediction

The classification pipeline

Training

Testing
Regression

predicting a numeric value

Stock market
Weather prediction revisited

Modeling sensor data

- Measure temperatures at some locations
- Predict temperatures throughout the environment

[Guestrin et al. '04]
Similarity

finding data

Given image, find similar images
Clustering

discovering structure in data
Clustering Data: Group similar things

Clustering images

Set of Images

Goldberger et al.
Clustering web search results

Embedding
visualizing data
Embedding images

Images have thousands or millions of pixels.
Can we give each image a coordinate, such that similar images are near each other?

[Saul & Roweis ’03]

Embedding words

[Joseph Turian]
Embedding words (zoom in)

Reinforcement Learning

training by feedback
Learning to act

- Reinforcement learning
- An agent
 - Makes sensor observations
 - Must select action
 - Receives rewards
 - positive for “good” states
 - negative for “bad” states

[Ng et al. ’05]

Bringing it all together…
HURLEY: Uh ... the Chinese people have water. (Sayid and Kate go to check it out.)

[SAYID]

[SUN]

[EXT. BEACH - CRASH SITE]

(Sayid holds the empty bottle in his hand and questions Sun.)

SAYID: (quietly) Where did you get this? (He looks at her.)

[EXT. JUNGLE]

(Sawyer is walking through the jungle. He reaches a spot. He kneels down and looks back to check that no one’s followed him.)

Combining video, text and audio

Automatically Discovered and Labeled Actions

sit down

(Locke) (sits down) ()

follow

(Kate) (follows) (Jack)

grab

(Kate) (grabs) (case)

kiss

(Shannon) (kisses) (case)

open door

(Door) (opens) ()

point

(JACK) (points) ()

smile

(Kate) (smiles) ()

wake

(Sawyer) (wakes up) ()

swim

(Sawyer) (swims) ()
Growth of Machine Learning

One of the most sought for specialties in industry today!!!!

- Machine learning is preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - Computational biology
 - Sensor networks
 - ...

- This trend is accelerating, especially with **Big Data**
 - Improved machine learning algorithms
 - Improved data capture, networking, faster computers
 - Software too complex to write by hand
 - New sensors / IO devices
 - Demand for self-customization to user, environment

Syllabus

- Covers a wide range of Machine Learning techniques – from basic to state-of-the-art
- You will learn about the methods you heard about:
 - Point estimation, regression, naïve Bayes, logistic regression, nearest-neighbor, decision trees, boosting, perceptron, overfitting, regularization, dimensionality reduction, PCA, error bounds, VC dimension, SVMs, kernels, margin bounds, K-means, EM, mixture models, semi-supervised learning, HMMs, graphical models, active learning, reinforcement learning...
- Covers algorithms, theory and applications
- It’s going to be fun and hard work 😊
Prerequisites

- Formally:
 - STAT 341, STAT 391, or equivalent
- Probabilities
 - Distributions, densities, marginalization…
- Basic statistics
 - Moments, typical distributions, regression…
- Algorithms
 - Dynamic programming, basic data structures, complexity…
- Programming
 - R will be very useful, but we’ll help you get started
 - We provide some background, but the class will be fast paced
- Ability to deal with “abstract mathematical concepts”

Recitations & Python

- We’ll run an **optional** recitations:
 - Tuesdays @5:30pm
 - Location TBD

- We are recommending Python for homeworks!
 - There are many resources to get started with Python online
 - We’ll run an **optional** tutorial:
 - First recitation: Tuesday 10/1 @5:30pm
Staff

- Three Great TAs: Great resource for learning, interact with them!
 - **Eric Lei**
 Office hours: Fridays 1:30-3:30pm
 - **Marco Ribeiro**
 Office hours: Tuesdays 1:30-3:20pm
 - **Tyler Johnson**
 Office hours: Mondays 3-5pm

- Prof: **Carlos Guestrin**
 Office hours: Wednesdays 10:30-11:30am

Communication Channels

- Only channel for announcements, questions, etc. – Catalyst Group:
 - https://catalyst.uw.edu/gopost/board/tbjohns/34218/
 - Subscribe!
 - All non-personal questions should go here
 - Answering your question will help others
 - Feel free to chime in

- For e-mailing instructors about personal issues, use:
 - cse546-instructors@cs.washington.edu
Text Books

- Required Textbook:
 - Machine Learning: a Probabilistic Perspective; Kevin Murphy

- Optional Books:
 - Pattern Recognition and Machine Learning; Chris Bishop
 - The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Trevor Hastie, Robert Tibshirani, Jerome Friedman
 - Machine Learning; Tom Mitchell
 - Information Theory, Inference, and Learning Algorithms; David MacKay

Grading

- 4 homeworks (35%)
 - First one goes out 9/30
 - Start early, Start early

- Final project (30%)
 - Full details out around 10/9
 - Projects done individually, or groups of two students

- Midterm (15%)
 - Wed., 10/30 in class

- Final (20%)
 - TBD by registrar
Homeworks

- Homeworks are hard, start early 😊
- Due in the beginning of class
- 33% subtracted per late day
- You have 3 LATE DAYS to use for homeworks only throughout the quarter
 - Please plan accordingly and after that don’t be about deadlines, travel,... 😊
- All homeworks must be handed in, even for zero credit
- Use Catalyst to submit homeworks

Collaboration
- You may discuss the questions
- Each student writes their own answers
- Write on your homework anyone with whom you collaborate
- Each student must write their own code for the programming part
- Please don’t search for answers on the web, Google, previous years’ homeworks, etc.
 - please ask us if you are not sure if you can use a particular reference

Projects

- An opportunity to exercise what you learned and to learn new things
- Individually or groups of two
- Must involve real data
 - Must be data that you have available to you by the time of the project proposals
- Must involve machine learning
- It’s encouraged to be related to your research, but must be something new you did this quarter
 - Not a project you worked on during the summer, last year, etc.
- Full details in a couple of weeks

- Wed., October 23 at 9:00am: Project Proposals
- Mon., November 11 at 9:00am: Project Milestone
- Wed., December 4, 3-5pm: Poster Session
- Mon., December 9 at 9:00am: Project Report
Enjoy!

- ML is becoming ubiquitous in science, engineering and beyond
- It’s one of the hottest topics in industry today
- This class should give you the basic foundation for applying ML and developing new methods
- The fun begins…

Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
 - He says: I have thumbtack, if I flip it, what’s the probability it will fall with the nail up?
 - You say: Please flip it a few times:
 - You say: The probability is:
 - He says: Why???
 - You say: Because…
Thumbtack – Binomial Distribution

- $P(\text{Heads}) = \theta$, $P(\text{Tails}) = 1-\theta$

- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution
- Sequence D of α_H Heads and α_T Tails
 \[
P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}\]

Maximum Likelihood Estimation

- **Data**: Observed set D of α_H Heads and α_T Tails
- **Hypothesis**: Binomial distribution
- Learning θ is an optimization problem
 - What’s the objective function?
- **MLE**: Choose $\hat{\theta}$ that maximizes the probability of observed data:
 \[
 \hat{\theta} = \arg\max_{\theta} P(D \mid \theta) = \arg\max_{\theta} \ln P(D \mid \theta)
 \]
Your first learning algorithm

\[\hat{\theta} = \arg \max_{\theta} \ln P(D | \theta) \]
\[= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

- Set derivative to zero:
 \[\frac{d}{d\theta} \ln P(D | \theta) = 0 \]

How many flips do I need?

\[\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: \(\theta = 3/5 \), I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- **He says: What’s better?**
 - You say: Humm... The more the merrier???
 - He says: Is this why I am paying you the big bucks???
Simple bound
(based on Hoeffding’s inequality)

For $N = \alpha_H + \alpha_T$, and $\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$

Let θ^* be the true parameter, for any $\epsilon > 0$:

$$P(|\hat{\theta} - \theta^* | \geq \epsilon) \leq 2e^{-2N\epsilon^2}$$

PAC Learning

- PAC: Probably Approximate Correct
- Billionaire says: I want to know the thumbtack parameter θ, within $\epsilon = 0.1$, with probability at least $1-\delta = 0.95$. How many flips?

$$P(|\hat{\theta} - \theta^* | \geq \epsilon) \leq 2e^{-2N\epsilon^2}$$
What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians…

\[
P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

Some properties of Gaussians

- Affine transformation (multiplying by scalar and adding a constant)
 - \(X \sim N(\mu, \sigma^2) \)
 - \(Y = aX + b \) \(\Rightarrow \) \(Y \sim N(a\mu+b, a^2\sigma^2) \)

- Sum of Gaussians
 - \(X \sim N(\mu_X, \sigma^2_X) \)
 - \(Y \sim N(\mu_Y, \sigma^2_Y) \)
 - \(Z = X+Y \) \(\Rightarrow \) \(Z \sim N(\mu_X+\mu_Y, \sigma^2_X+\sigma^2_Y) \)
Learning a Gaussian

- Collect a bunch of data
 - Hopefully, i.i.d. samples
 - e.g., exam scores

- Learn parameters
 - Mean
 - Variance

\[P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

MLE for Gaussian

- Prob. of i.i.d. samples \(D = \{x_1, \ldots, x_N\} \):

\[P(D \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} \]

- Log-likelihood of data:

\[
\ln P(D \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} \right] \\
= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}
\]
Your second learning algorithm: MLE for mean of a Gaussian

What’s MLE for mean?

\[
\frac{d}{d\mu} \ln P(D | \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]

MLE for variance

Again, set derivative to zero:

\[
\frac{d}{d\sigma} \ln P(D | \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right] = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]
Learning Gaussian parameters

- **MLE:**
 \[
 \hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i
 \]
 \[
 \hat{\sigma}^2_{MLE} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2
 \]

- **BTW. MLE for the variance of a Gaussian is **biased**
 - Expected result of estimation is not true parameter!
 - Unbiased variance estimator:
 \[
 \hat{\sigma}^2_{unbiased} = \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2
 \]

What you need to know…

- **Learning is…**
 - Collect some data
 - E.g., thumbtack flips
 - Choose a hypothesis class or model
 - E.g., binomial
 - Choose a loss function
 - E.g., data likelihood
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain MLE
 - Collect the big bucks

- **Like everything in life, there is a lot more to learn…**
 - Many more facets… Many more nuances…
 - The fun will continue…