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What is Machine Learning ? 
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Machine Learning 

Study of algorithms that 
n  improve their performance  
n  at some task  
n  with experience 

Data Understanding Machine  
Learning 
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Classification 
 

from data to discrete classes 
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Spam filtering  
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data prediction 
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Text classification 

Company home page 

 vs 

Personal home page 

 vs 

Univeristy home page 

 vs 

… 
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Object detection 

Example training images 
for each orientation 

(Prof. H. Schneiderman) 
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Reading 
a noun 
(vs verb) 

[Rustandi et al., 
2005] 
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Weather prediction 
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The classification pipeline 
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Training 

Testing 
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Regression 
 

predicting a numeric value 

Stock market 
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Weather prediction revisted 
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Temperature 
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Modeling sensor data 

n  Measure temperatures at 
some locations 

n  Predict temperatures 
throughout the environment 
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Similarity 
 

finding data 

Given image, find similar images 
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Similar products 
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Clustering 
 

discovering structure in data 
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Clustering Data: Group similar things 
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Clustering images 
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Set of Images 
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Clustering web search results 
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Embedding 
 

visualizing data 
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Embedding images 
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Images have thousands or 
millions of pixels. 

 
Can we give each image a 

coordinate,  
such that similar images 

are near each other? 

[Saul & Roweis ‘03] 

Embedding words 
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Embedding words (zoom in) 
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Reinforcement Learning 
 

training by feedback 
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Learning to act 

n  Reinforcement learning 
n  An agent  

¨  Makes sensor observations 
¨  Must select action 
¨  Receives rewards  

n  positive for “good” states 
n  negative for “bad” states 

[Ng et al. ’05]  
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Bringing it all together… 
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HURLEY:  Uh ... the 
Chinese people have 
water. 
(Sayid and Kate go 
to check it out.)   
 
[EXT. BEACH - 
CRASH SITE]   
 
(Sayid holds the 
empty bottle in his 
hand and questions 
Sun.)   
 
SAYID:  (quietly)  
Where did you get 
this?  
(He looks at her.)  
 
[EXT. JUNGLE] 
 
(Sawyer is walking 
through the jungle.  
He reaches a spot.  
He kneels down and 
looks back to check 
that no one's 
followed him. 

 
SAYID 

 
SUN 

 
BOTTLE 

 
BEACH 

 
HOLDING 
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Combining video, text and audio 

Taskar et al. ©2005-2013 Carlos Guestrin 

Automatically Discovered and  
Labeled Actions shout	



swim	



wake	



smile	



point	



sit down	



follow	



grab	

 kiss	

 open door	
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Growth of Machine Learning 

n  Machine learning is preferred approach to 
¨  Speech recognition, Natural language processing 
¨  Computer vision 
¨  Medical outcomes analysis 
¨  Robot control 
¨  Computational biology 
¨  Sensor networks 
¨  … 

n  This trend is accelerating, especially with Big Data 
¨  Improved machine learning algorithms  
¨  Improved data capture, networking, faster computers 
¨  Software too complex to write by hand 
¨  New sensors / IO devices 
¨  Demand for self-customization to user, environment 

One of the most sought for specialties in industry today!!!!  
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Syllabus 

n  Covers a wide range of Machine Learning 
techniques  –  from basic to state-of-the-art 

n  You will learn about the methods you heard about: 
¨  Point estimation, regression, naïve Bayes, logistic regression, nearest-neighbor, 

decision trees, boosting, perceptron, overfitting, regularization, dimensionality 
reduction, PCA, error bounds, VC dimension, SVMs, kernels, margin bounds,  
K-means, EM, mixture models, semi-supervised learning, HMMs, graphical models, 
active learning, reinforcement learning…  

n  Covers algorithms, theory and applications 
n  It’s going to be fun and hard work J 
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Prerequisites 

n  Formally: 
¨  STAT 341, STAT 391, or equivalent 

n  Probabilities  
¨  Distributions, densities, marginalization… 

n  Basic statistics 
¨  Moments, typical distributions, regression… 

n  Algorithms 
¨  Dynamic programming, basic data structures, complexity… 

n  Programming 
¨  R will be very useful, but we’ll help you get started  

n  We provide some background, but the class will be fast paced 

n  Ability to deal with “abstract mathematical concepts” 

Recitations & Python 

n  We’ll run an optional recitations: 
¨ Tuesdays @5:30pm 
¨ Location TBD 

n  We are recommending Python for homeworks! 
¨ There are many resources to get started with Python 

online 
¨ We’ll run an optional tutorial: 

n  First recitation: Tuesday 10/1 @5:30pm 
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Staff 

n  Three Great TAs: Great resource for learning, 
interact with them! 
¨  Eric Lei 

Office hours: Fridays 1:30-3:30pm 

¨  Marco Ribeiro 
Office hours: Tuesdays 1:30-3:20pm 

¨  Tyler Johnson  
Office hours: Mondays 3-5pm 

¨  Prof: Carlos Guestrin 
Office hours: Wednesdays 10:30-11:30am 
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Communication Channels 

n  Only channel for announcements, questions, 
etc. – Catalyst Group: 
¨ https://catalyst.uw.edu/gopost/board/tbjohns/34218/ 
¨ Subscribe! 
¨ All non-personal questions should go here 
¨ Answering your question will help others 
¨ Feel free to chime in 

n  For e-mailing instructors about personal issues, 
use: 
¨   cse546-instructors@cs.washington.edu 
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Text Books 

n  Required Textbook:  
¨  Machine Learning: a Probabilistic Perspective; Kevin Murphy 

n  Optional Books: 
¨  Pattern Recognition and Machine Learning; Chris Bishop 
¨  The Elements of Statistical Learning: Data Mining, Inference, 

and Prediction; Trevor Hastie, Robert Tibshirani, Jerome 
Friedman 

¨  Machine Learning; Tom Mitchell 
¨  Information Theory, Inference, and Learning Algorithms; David 

MacKay 
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Grading 

n  4 homeworks (35%) 
¨ First one goes out 9/30 

n  Start early, Start early, Start early, Start early, Start early, 
Start early, Start early, Start early, Start early, Start early, 
Start early, Start early, Start early, Start early, Start early, 
Start early, Start early, Start early, Start early, Start early 

n  Final project (30%) 
¨ Full details out around 10/9 

¨ Projects done individually, or groups of two students   
n  Midterm (15%) 

¨ Wed., 10/30 in class 
n  Final (20%) 

¨ TBD by registrar 
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Homeworks 
n  Homeworks are hard, start early J 
n  Due in the beginning of class 
n  33% subtracted per late day 
n  You have 3 LATE DAYS to use for homeworks only throughout the quarter 

¨  Please plan accordingly and after that don’t be about deadlines, travel,… J 

n  All homeworks must be handed in, even for zero credit 
n  Use Catalyst to submit homeworks 

n  Collaboration 
¨  You may discuss the questions 
¨  Each student writes their own answers 
¨  Write on your homework anyone with whom you collaborate 
¨  Each student must write their own code for the programming part 
¨  Please don’t search for answers on the web, Google, previous years’ 

homeworks, etc.   
n  please ask us if you are not sure if you can use a particular reference 

Projects 
n  An opportunity to exercise what you learned and to learn new things 
n  Individually or groups of two 
n  Must involve real data 

¨  Must be data that you have available to you by the time of the project proposals 
n  Must involve machine learning 
n  It’s encouraged to be related to your research, but must be something new 

you did this quarter 
¨  Not a project you worked on during the summer, last year, etc. 

n  Full details in a couple of weeks 

n  Wed., October 23 at 9:00am: Project Proposals 
n  Mon., November 11 at 9:00am: Project Milestone 
n  Wed., December 4, 3-5pm: Poster Session 
n  Mon., December 9 at 9:00am: Project Report 
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Enjoy! 

n  ML is becoming ubiquitous in science, 
engineering and beyond 

n  It’s one of the hottest topics in industry today  
n  This class should give you the basic foundation 

for applying ML and developing new methods 
n  The fun begins… 
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Your first consulting job 

n  A billionaire from the suburbs of Seattle asks you 
a question: 
¨ He says: I have thumbtack, if I flip it, what’s the 

probability it will fall with the nail up? 
¨ You say: Please flip it a few times: 

¨ You say: The probability is: 

¨ He says: Why??? 
¨ You say: Because… 
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Thumbtack – Binomial Distribution 

n  P(Heads) = θ,  P(Tails) = 1-θ	



n  Flips are i.i.d.: 
¨  Independent events 
¨  Identically distributed according to Binomial 

distribution 
n  Sequence D of αH Heads and αT Tails   
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Maximum Likelihood Estimation 

n  Data: Observed set D of αH Heads and αT Tails   
n  Hypothesis: Binomial distribution  
n  Learning θ is an optimization problem 

¨ What’s the objective function? 

n  MLE: Choose θ that maximizes the probability of 
observed data: 



23 

45 ©2005-2013 Carlos Guestrin 

Your first learning algorithm 

n  Set derivative to zero: 
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How many flips do I need? 

n  Billionaire says: I flipped 3 heads and 2 tails. 
n  You say: θ = 3/5, I can prove it! 
n  He says: What if I flipped 30 heads and 20 tails? 
n  You say: Same answer, I can prove it! 

n He says: What’s better? 
n  You say: Humm… The more the merrier??? 
n  He says: Is this why I am paying you the big bucks??? 
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Simple bound  
(based on Hoeffding’s inequality) 

n  For N = αH+αT, and 

n  Let θ* be the true parameter, for any ε>0: 
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PAC Learning 

n  PAC: Probably Approximate Correct 
n  Billionaire says: I want to know the thumbtack 

parameter θ, within ε = 0.1, with probability at 
least 1-δ = 0.95. How many flips? 
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What about continuous variables? 

n  Billionaire says: If I am measuring a continuous 
variable, what can you do for me? 

n  You say: Let me tell you about Gaussians… 
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Some properties of Gaussians 

n  affine transformation (multiplying by scalar and 
adding a constant) 
¨ X ~ N(µ,σ2) 
¨ Y = aX + b    è Y ~ N(aµ+b,a2σ2) 

n  Sum of Gaussians 
¨ X ~ N(µX,σ2

X) 
¨ Y ~ N(µY,σ2

Y) 
¨ Z = X+Y    è  Z ~ N(µX+µY, σ2

X+σ2
Y) 
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Learning a Gaussian 

n  Collect a bunch of data 
¨ Hopefully, i.i.d. samples 
¨ e.g., exam scores 

n  Learn parameters 
¨ Mean 
¨ Variance 
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MLE for Gaussian 

n  Prob. of i.i.d. samples D={x1,…,xN}: 

n  Log-likelihood of data: 
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Your second learning algorithm: 
MLE for mean of a Gaussian 

n  What’s MLE for mean? 
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MLE for variance 

n  Again, set derivative to zero: 
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Learning Gaussian parameters 

n  MLE: 

n  BTW. MLE for the variance of a Gaussian is biased 
¨ Expected result of estimation is not true parameter!  
¨ Unbiased variance estimator: 

What you need to know… 

n  Learning is… 
¨  Collect some data 

n  E.g., thumbtack flips 
¨  Choose a hypothesis class or model 

n  E.g., binomial 
¨  Choose a loss function 

n  E.g., data likelihood 
¨  Choose an optimization procedure 

n  E.g., set derivative to zero to obtain MLE 
¨  Collect the big bucks 

n  Like everything in life, there is a lot more to learn… 
¨  Many more facets… Many more nuances…  
¨  The fun will continue… 
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