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Voting  (Ensemble Methods) 
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are 

good at different parts of the input space 
n  Output class: (Weighted) vote of each classifier 

¨  Classifiers that are most “sure” will vote with more conviction 
¨  Classifiers will be most “sure” about a particular part of the space 
¨  On average, do better than single classifier! 

n  But how do you ???  
¨  force classifiers to learn about different parts of the input space? 
¨  weigh the votes of different classifiers? 
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AdaBoost 
n  Initialize weights to uniform dist: D1(j) = 1/N 
n  For t = 1…T 

¨  Train weak learner ht on distribution Dt over the data 
¨  Choose weight αt  

¨  Update weights: 

n  Where Zt is normalizer: 

 
 
n  Output final classifier: 
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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Why choose αt for hypothesis ht this way? 

We can minimize this bound by choosing αt on each iteration to minimize Zt. 
 
 
 
 
 
For boolean target function, this is accomplished by [Freund & Schapire ’97]:  
 
 
 
 
 
 
You’ll prove this in your homework! J 

[Schapire, 1989] 
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Strong, weak classifiers 

n  If each classifier is (at least slightly) better than random 
¨   εt < 0.5 

n  AdaBoost will achieve zero training error (exponentially fast): 

n  Is it hard to achieve better than random training error? 
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Boosting results – Digit recognition 

n  Boosting often 
¨ Robust to overfitting 
¨ Test set error decreases even after training error is zero 

[Schapire, 1989] 
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Boosting: Experimental Results 

Comparison of C4.5, Boosting C4.5, Boosting decision 
stumps (depth 1 trees), 27 benchmark datasets 

[Freund & Schapire, 1996] 
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Boosting and Logistic Regression 

Logistic regression assumes: 
 
 
And tries to maximize data likelihood: 
 
 
 
Equivalent to minimizing log loss 
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Boosting and Logistic Regression 

Logistic regression equivalent to minimizing log loss 

Boosting minimizes similar loss function!! 

Both smooth approximations of 0/1 loss! 
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Logistic regression and Boosting 

Logistic regression: 
n  Minimize loss fn 

n  Define  

    
 where features xi are 
predefined 

 
n  Weights wi are learned in 

joint optimization 
 
 
 

Boosting: 
n  Minimize loss fn 

n  Define  

   where ht(x) defined 
dynamically to fit data 
 (not a linear classifier) 

 
n  Weights αt learned 

incrementally 
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What you need to know about Boosting 

n  Combine weak classifiers to obtain very strong classifier 
¨  Weak classifier – slightly better than random on training data 
¨  Resulting very strong classifier – can eventually provide zero training error 

n  AdaBoost algorithm 
n  Boosting v. Logistic Regression  

¨  Similar loss functions 
¨  Single optimization (LR) v. Incrementally improving classification (B) 

n  Most popular application of Boosting: 
¨  Boosted decision stumps! 
¨  Very simple to implement, very effective classifier 
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Projects 
n  An opportunity to exercise what you learned and to learn new things 
n  Individually or groups of two 
n  Must involve real data 

¨  Must be data that you have available to you by the time of the project proposals 
n  Must involve machine learning 
n  It’s encouraged to be related to your research, but must be something new 

you did this quarter 
¨  Not a project you worked on during the summer, last year, etc. 

n  Sample projects on course website 

n  Wed., October 23 at 9:00am: Project Proposals 
n  Mon., November 11 at 9:00am: Project Milestone 
n  Wed., December 4, 3-5pm: Poster Session 
n  Mon., December 9 at 9:00am: Project Report 
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Linear separability  

n  A dataset is linearly separable iff there exists a 
separating hyperplane: 
¨   Exists w, such that: 

n  w0 + ∑i wi xi > 0; if x={x1,…,xk} is a positive example 
n  w0 + ∑i wi xi < 0; if x={x1,…,xk} is a negative example 
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9 

17 

Not linearly separable data  

n  Some datasets are not linearly separable! 
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Addressing non-linearly separable 
data – Option 1, non-linear features 

n  Choose non-linear features, e.g., 
¨  Typical linear features: w0 + ∑i wi xi 

¨  Example of non-linear features:  
n  Degree 2 polynomials, w0 + ∑i wi xi  + ∑ij wij xi xj 

n  Classifier hw(x) still linear in parameters w 
¨  As easy to learn 
¨  Data is linearly separable in higher dimensional spaces 
¨  More discussion later this quarter 
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Addressing non-linearly separable 
data – Option 2, non-linear classifier 

n  Choose a classifier hw(x) that is non-linear in parameters w, e.g., 
¨  Decision trees, boosting, nearest neighbor, neural networks… 

n  More general than linear classifiers 
n  But, can often be harder to learn (non-convex/concave 

optimization required) 
n  But, but, often very useful 
n  (BTW. Later this quarter, we’ll see that these options are not that 

different) 
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A small dataset: Miles Per Gallon 

From the UCI repository (thanks to Ross Quinlan) 

40 training 
examples 

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Suppose we want 
to predict MPG 
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A Decision Stump 
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Recursion Step 

Take the 
Original 
Dataset.. 

And partition it 
according 
to the value of 
the attribute we 
split on 

Examples 
in which 
cylinders 

= 4  

Examples
in which 
cylinders 

= 5 

Examples
in which 
cylinders 

= 6  

Examples
in which 
cylinders 

= 8 
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Recursion Step 

Records in 
which cylinders 

= 4  

Records in 
which cylinders 

= 5 

Records in 
which cylinders 

= 6  

Records in 
which cylinders 

= 8 

Build tree from 
These examples.. 

Build tree from 
These examples.. 

Build tree from 
These examples.. 

Build tree from 
These examples.. 
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Second level of tree 

Recursively build a tree from the seven 
records in which there are four cylinders and 
the maker was based in Asia 

(Similar recursion in the 
other cases) 
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The final tree 
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Classification of a new example 

n  Classifying a test 
example – traverse tree 
and report leaf label 

©Carlos Guestrin 2005-2013 
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Are all decision trees equal? 

n  Many trees can represent the same concept 
n  But, not all trees will have the same size! 

¨ e.g., φ = A∧B ∨ ¬A∧C  ((A and B) or (not A and C)) 

©Carlos Guestrin 2005-2013 
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Learning decision trees is hard!!! 

n  Learning the simplest (smallest) decision tree is 
an NP-complete problem [Hyafil & Rivest ’76]  

n  Resort to a greedy heuristic: 
¨ Start from empty decision tree 
¨ Split on next best attribute (feature) 
¨ Recurse 

©Carlos Guestrin 2005-2013 
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Choosing a good attribute 
X1 X2 Y 
T T T 
T F T 
T T T 
T F T 
F T T 
F F F 
F T F 
F F F 
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Measuring uncertainty 

n  Good split if we are more certain about 
classification after split 
¨ Deterministic good (all true or all false) 
¨ Uniform distribution bad 

P(Y=A) = 1/4 P(Y=B) = 1/4 P(Y=C) = 1/4 P(Y=D) = 1/4 

P(Y=A) = 1/2 P(Y=B) = 1/4 P(Y=C) = 1/8 P(Y=D) = 1/8 

©Carlos Guestrin 2005-2013 
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Entropy 

Entropy H(X) of a random variable Y 
 
 
 
More uncertainty, more entropy! 
Information Theory interpretation: H(Y) is the expected number of bits needed  

to encode a randomly drawn value of Y  (under most efficient code)  
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Andrew Moore’s Entropy in a nutshell 

Low Entropy High Entropy 
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Low Entropy High Entropy 
..the values (locations of 
soup) unpredictable... 
almost uniformly sampled 
throughout our dining room 

..the values (locations 
of soup) sampled 
entirely from within the 
soup bowl 

Andrew Moore’s Entropy in a nutshell 
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Information gain 

n  Advantage of attribute – decrease in uncertainty 
¨  Entropy of Y before you split 

¨  Entropy after split 
n  Weight by probability of following each branch, i.e., 

normalized number of records  

n  Information gain is difference 

X1 X2 Y 
T T T 
T F T 
T T T 
T F T 
F T T 
F F F 
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Learning decision trees 

n  Start from empty decision tree 
n  Split on next best attribute (feature) 

¨ Use, for example, information gain to select attribute 
¨ Split on  

n  Recurse 
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Look at all the 
information 
gains… 

Suppose we want 
to predict MPG 
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A Decision Stump 
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Base Case 
One 

Don’t split a 
node if all 
matching 

records have 
the same 

output value 

©Carlos Guestrin 2005-2013 
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Base Case 
Two 

Don’t split a 
node if none 

of the 
attributes can 

create 
multiple non-

empty 
children 
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Base Case Two: 
No attributes can 

distinguish 

©Carlos Guestrin 2005-2013 
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Base Cases 
n  Base Case One: If all records in current data subset have the same 

output then don’t recurse 
n  Base Case Two: If all records have exactly the same set of input 

attributes then don’t recurse 
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Base Cases: An idea 
n  Base Case One: If all records in current data subset have the same 

output then don’t recurse 
n  Base Case Two: If all records have exactly the same set of input 

attributes then don’t recurse 

Proposed Base Case 3: 
 

If all attributes have zero information 
gain then don’t recurse 

 
 

• Is this a good idea? 
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The problem with Base Case 3 
a b y
0 0 0
0 1 1
1 0 1
1 1 0

Y = A XOR B 

The information gains: 
The resulting bad 
decision tree: 
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If we omit Base Case 3: 
a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b 

The resulting decision tree: 

©Carlos Guestrin 2005-2013 



23 

45 

Basic Decision Tree Building 
Summarized 
BuildTree(DataSet,Output) 
n  If all output values are the same in DataSet, return a leaf node that says 

“predict this unique output” 
n  If all input values are the same, return a leaf node that says “predict the 

majority output” 
n  Else find attribute X with highest Info Gain 
n  Suppose X has nX distinct values (i.e. X has arity nX).  

¨  Create and return a non-leaf node with nX children.  
¨  The i’th child should be built by calling 

BuildTree(DSi,Output) 
Where DSi built consists of all those records in DataSet for which X = ith 

distinct value of X. 
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