What about prior

- Billionaire says: Wait, I know that the thumbtack is “close” to 50-50. What can you do for me now?
- **You say: I can learn it the Bayesian way…**

- Rather than estimating a single θ, we obtain a distribution over possible values of θ
Bayesian Learning

- Use Bayes rule:
 \[P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})} \]

- Or equivalently:
 \[P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta) \]

- MLE: \(\max_{\theta} P(\mathcal{D} \mid \theta) \)
 \(\Rightarrow \theta^\text{MLE} \)

- Bayesian: \(P(\theta \mid \mathcal{D}) \)
 - When \(P(\theta) \) is uniform:
 \[P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) \]

Bayesian Learning for Thumbtack

- Likelihood function is simply Binomial:
 \[P(\mathcal{D} \mid \theta) = \theta^H (1 - \theta)^T \]

- What about prior?
 - Represent expert knowledge
 - Simple posterior form

- Conjugate priors:
 - Closed-form representation of posterior
 - For Binomial, conjugate prior is Beta distribution
Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H-1}(1-\theta)^{\beta_T-1}}{B(\beta_H, \beta_T)} \sim \text{Beta}(\beta_H, \beta_T)$$

Mean: $B(\beta_H + \beta_T - 2, 2)$
Mode: $\left(\theta_H - 1\right)/(\alpha_H + \beta_T - 2)$

- Likelihood function: $P(D | \theta) = \theta^{\alpha_H}(1-\theta)^{\alpha_T}$
- Posterior: $P(\theta | D) \propto P(D | \theta) P(\theta)$

Prior: Beta(β_H, β_T)
Data: α_H heads and α_T tails

Posterior distribution:

$$P(\theta | D) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Bayesian update
Using Bayesian posterior

- Posterior distribution:
 \[P(\theta \mid D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- Bayesian inference:
 - No longer single parameter:
 \[E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid D) d\theta \]
 - Integral is often hard to compute

MAP: Maximum a posteriori approximation

- Posterior distribution:
 \[P(\theta \mid D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- As more data is observed, Beta is more certain

- MAP: use most likely parameter:
 \[\hat{\theta}_{MAP} = \arg \max_\theta P(\theta \mid D) \quad E[f(\theta)] \approx f(\hat{\theta}_{MAP}) \]
MAP for Beta distribution

\[P(\theta \mid D) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- MAP: use most likely parameter:
 \[\hat{\theta}_{\text{MAP}} = \arg \max \theta P(\theta \mid D) = \frac{\beta_H + \alpha_H - 1}{\beta_H + \alpha_H + \beta_T + \alpha_T - 2} \]

- Beta prior equivalent to extra thumbtack flips
- As \(N \to \frac{1}{2} \), prior is “forgotten” \(\alpha_H, \alpha_T \)
- But, for small sample size, prior is important!

Linear Regression

Machine Learning – CSE546
Carlos Guestrin
University of Washington
September 30, 2013
Prediction of continuous variables

- Billionaire sayz: Wait, that’s not what I meant!
- You sayz: Chill out, dude.
- He sayz: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You sayz: I can regress that…

The regression problem

- Instances: \(\langle x_j, t_j \rangle \)
- Learn: Mapping from \(x \) to \(t(x) \)
- Hypothesis space:
 - Given, basis functions \(H = \{ h_1, \ldots, h_K \} \)
 - Find coeffs \(w = (w_1, \ldots, w_k) \)
 - \(t(x) = \sum_i w_i h_i(x) \)
 - Why is this called linear regression???
 - model is linear in the parameters

- Precisely, minimize the residual squared error:

\[
w^* = \arg \min_w \sum_{j=1}^p \left(t(x_j) - \sum_{i=1}^K w_i h_i(x_j) \right)^2
\]
The regression problem in matrix notation

\[w^* = \arg \min_w \sum_j \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2 \]

\[w^* = \arg \min_w (Hw - t)^T (Hw - t) \]

Minimizing the Residual

\[w^* = \arg \min_w (Hw - t)^T (Hw - t) \]

\[\nabla f(w) = 0 \implies \nabla H^T (Hw - t) = 0 \]

\[H^T H w - H^T t = 0 \]

\[\implies w^* = \left(H^T H \right)^{-1} H^T t \]

\[\text{in scalar calculus,} \]

\[\frac{\partial}{\partial w} (dw-t)(dw-t) = 2dw - t \]

\[= 2\left(Hw - t \right) \]

\[\text{in matrix calculus,} \]

\[\text{let } \left[(Hw - t)^T (Hw - t) \right] \]

\[\text{is } 2H^T (Hw - t) \]
Regression solution = simple matrix operations

\[w^* = \arg \min_w (Hw - t)^T (Hw - t) \]

residual error

solution: \[w^* = (H^T H)^{-1} H^T t = A^{-1} b \]

where \[A = H^T H = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \]

\[b = H^T t = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \]

But, why?

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians…
- Model: prediction is linear function plus Gaussian noise
 \[t(x) = \sum_i w_i h_i(x) + \varepsilon_x \]
 \(\varepsilon_x \sim N(0, \sigma^2) \) \(\varepsilon_x \) is independent
 \(t(x) \) is independent
 \(N(\varepsilon_x; h_i(x), \sigma^2) \)

- Learn \(w \) using MLE
 \[P(t \mid x, w, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{[t-\sum_i w_i h_i(x)]^2}{2\sigma^2}} \]
Maximizing log-likelihood

Maximize:
\[
\ln P(D | w, \sigma) = \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{j=1}^N e^{-\frac{1}{2\sigma^2} \left(t(y_j) - \sum_{i} w_i h_i(x_j) \right)^2} \]

Go to recitation!! 😊
- Tuesday, 5:30pm in LOW 101

First homework will go out today
- Due on October 14
- Start early!!
Bias-Variance Tradeoff

Machine Learning – CSE546
Carlos Guestrin
University of Washington
September 30, 2013

Bias-Variance tradeoff – Intuition

- Model too “simple” → does not fit the data well
 - A biased solution

- Model too complex → small changes to the data, solution changes a lot
 - A high-variance solution
(Squared) Bias of learner

- Given dataset D with N samples, learn function $h_D(x)$
 - If you sample a different dataset D' with N samples, you will learn different $h_D'(x)$
 - **Expected hypothesis**: $E_D[h_D(x)] = \tilde{h}_N(x)$
 - $\tilde{h}_N(x)$ is what I expect to learn
 - **Bias**: difference between what you expect to learn and truth
 - Measures how well you expect to represent true solution
 - Decreases with more complex model
 - Bias2 at one point x: $\left(f(x) - \tilde{h}_N(x) \right)^2$
 - Average Bias2:
 \[
 E_x \left[\left(f(x) - \tilde{h}_N(x) \right)^2 \right]
 \]

Variance of learner

- Given dataset D with N samples, learn function $h_D(x)$
 - If you sample a different dataset D' with N samples, you will learn different $h_D'(x)$
 - **Variance**: difference between what you expect to learn and what you learn from a particular dataset
 - Measures how sensitive learner is to specific dataset
 - Decreases with simpler model
 - Variance at one point x: $E_D \left[(h_D(x) - \tilde{h}_N(x))^2 \right]$
 - Average variance:
 \[
 E_x E_D \left[(h_D(x) - \tilde{h}_N(x))^2 \right]
 \]
Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class → less bias
 - More complex class → more variance

Bias-Variance Decomposition of Error

\[h_N(x) = E_D[h_D(x)] \]

- Expected mean squared error: \(\text{MSE} = E_D \left[E_x \left[(t(x) - h_D(x))^2 \right] \right] \)
- To simplify derivation, drop \(x \):
 \[E_D \left[(t - h_D)^2 \right] \]
- Expanding the square:
 \[E_D \left[(t - \tilde{h}_N + \tilde{h}_N - h_D)^2 \right] \]
 \[= E_D \left[(t - \tilde{h}_N)^2 + (\tilde{h}_N - h_D)^2 \right] + 2E_D \left[(t - \tilde{h}_N)(\tilde{h}_N - h_D) \right] \]
 \[\text{bias} \quad \text{variance} \]

Play with this hint:
\[\tilde{h}_N = E_D[h_0] \]
All others are constants.
Moral of the Story: Bias-Variance Tradeoff Key in ML

- Error can be decomposed:
 \[\text{MSE} = E_D \left[E_x \left[(t(x) - h_D(x))^2 \right] \right] \]
 \[= E_x \left[(t(x) - \bar{h}_N(x))^2 \right] + E_D \left[E_x \left[(\bar{h}(x) - h_D(x))^2 \right] \right] \]

- Choice of hypothesis class introduces learning bias
 - More complex class → less bias
 - More complex class → more variance

What you need to know

- Regression
 - Basis function = features
 - Optimizing sum squared error
 - Relationship between regression and Gaussians
- Bias-variance trade-off
- Play with Applet