CSE546: Point Estimation
Winter 2012

Luke Zettlemoyer

Slides adapted from Carlos Guestrin and Dan Klein
Your first consulting job

• A billionaire from the suburbs of Seattle asks you a question:
 – **He says:** I have thumbtack, if I flip it, what’s the probability it will fall with the nail up?
 – **You say:** Please flip it a few times:

![Thumbtacks](image1.png)

 – **You say:** The probability is:
 • \(P(H) = 3/5 \)
 – **He says:** Why???
 – **You say:** Because...
Random Variables

• A random variable is some aspect of the world about which we (may) have uncertainty
 – R = Is it raining?
 – D = How long will it take to drive to work?
 – L = Where am I?

• We denote random variables with capital letters

• Random variables have domains
 – R in \{true, false\} (sometimes write as \{+r, ¬r\})
 – D in \[0, \infty\)
 – L in possible locations, maybe \{(0,0), (0,1), \ldots\}
Probability Distributions

- Discrete random variables have distributions

\[P(T) \]

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[P(W) \]

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>fog</td>
<td>0.3</td>
</tr>
<tr>
<td>meteor</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- A discrete distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

\[P(W = rain) = 0.1 \quad P(rain) = 0.1 \]

- Must have:

\[\forall x \ P(x) \geq 0 \quad \sum_x P(x) = 1 \]
Joint Distributions

- A **joint distribution** over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \ldots X_n = x_n) \quad \text{and} \quad P(x_1, x_2, \ldots x_n)$$

- Size of distribution if n variables with domain sizes d?

- Must obey:

$$P(x_1, x_2, \ldots x_n) \geq 0$$

$$\sum_{(x_1,x_2,\ldots x_n)} P(x_1, x_2, \ldots x_n) = 1$$

- For all but the smallest distributions, impractical to write out

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

\[
P(T, W) = \begin{array}{ccc}
T & W & P \\
hot & sun & 0.4 \\
hot & rain & 0.1 \\
cold & sun & 0.2 \\
cold & rain & 0.3 \\
\end{array}
\]

\[
P(T) = \sum_s P(t, s)
\]

\[
P(W) = \sum_t P(t, s)
\]

\[
P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)
\]
Conditional Probabilities

• A simple relation between joint and conditional probabilities
 – In fact, this is taken as the definition of a conditional probability

\[P(a|b) = \frac{P(a, b)}{P(b)} \]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[P(W = r|T = c) = ??? \]
Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others.

Condition	P(W	T)	Joint Distribution		
	P(W	T = hot)	P(T, W)		
	W	P	T	W	P
sun	0.8		hot	sun	0.4
rain	0.2		hot	rain	0.1
	P(W	T = cold)			
	W	P	cold	sun	0.2
	rain	0.6	cold	rain	0.3
The Product Rule

- Sometimes have conditional distributions but want the joint

\[P(x|y) = \frac{P(x, y)}{P(y)} \leftrightarrow P(x, y) = P(x|y)P(y) \]

- Example:

$P(W)$	$P(D	W)$	$P(D, W)$				
	D	W	P		D	W	P
R	wet	sun	0.1	wet	sun	0.08	
sun	dry	sun	0.9	dry	sun	0.72	
rain	wet	rain	0.7	wet	rain	0.14	
	dry	rain	0.3	dry	rain	0.06	
Bayes’ Rule

• Two ways to factor a joint distribution over two variables:

\[P(x, y) = P(x|y)P(y) = P(y|x)P(x) \]

• Dividing, we get:

\[P(x|y) = \frac{P(y|x)}{P(y)} P(x) \]

• Why is this at all helpful?
 – Lets us build one conditional from its reverse
 – Often one conditional is tricky but the other one is simple
 – Foundation of many practical systems (e.g. ASR, MT)

• In the running for most important ML equation!
Thumbtack – Binomial Distribution

- \(P(\text{Heads}) = \theta, \ P(\text{Tails}) = 1-\theta \)

- Flips are \textit{i.i.d.}: \(D = \{ x_i \mid i = 1 \ldots n \} \), \(P(D \mid \theta) = \Pi_i P(x_i \mid \theta) \)
 - Independent events
 - Identically distributed according to Binomial distribution

- Sequence \(D \) of \(\alpha_H \) Heads and \(\alpha_T \) Tails

\[
P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}
\]
Maximum Likelihood Estimation

• **Data:** Observed set D of α_H Heads and α_T Tails
• **Hypothesis:** Binomial distribution
• **Learning:** finding θ is an optimization problem
 – What’s the objective function?
 $$P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$
• **MLE:** Choose θ to maximize probability of D
 $$\hat{\theta} = \arg \max_{\theta} P(D \mid \theta)$$
 $$= \arg \max_{\theta} \ln P(D \mid \theta)$$
Your first parameter learning algorithm

\[\hat{\theta} = \arg \max_{\theta} \ln P(D \mid \theta) \]
\[= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

- Set derivative to zero, and solve!

\[\frac{d}{d\theta} \ln P(D \mid \theta) = \frac{d}{d\theta} [\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}] \]
\[= \frac{d}{d\theta} [\alpha_H \ln \theta + \alpha_T \ln(1 - \theta)] \]
\[= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta) \]
\[= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \]
\[\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]
But, how many flips do I need?

\[\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]

• Billionaire says: I flipped 3 heads and 2 tails.
• You say: \(\theta = 3/5 \), I can prove it!
• He says: What if I flipped 30 heads and 20 tails?
• You say: Same answer, I can prove it!
• **He says: What’s better?**
• You say: Umm... The more the merrier???
• He says: Is this why I am paying you the big bucks???
A bound (from Hoeffding’s inequality)

- For $N = \alpha_H + \alpha_T$, and $\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$

- Let θ^* be the true parameter, for any $\varepsilon > 0$:
 \[P(|\hat{\theta} - \theta^*| \geq \varepsilon) \leq 2e^{-2N\varepsilon^2} \]
PAC Learning

• **PAC**: Probably Approximately Correct
• **Billionaire says**: I want to know the thumbtack θ, within $\epsilon = 0.1$, with probability at least $1 - \delta = 0.95$.
• **How many flips?** Or, how big do I set N?

\[
P(|\hat{\theta} - \theta^*| \geq \epsilon) \leq 2e^{-2N\epsilon^2}
\]

\[
\delta \geq 2e^{-2N\epsilon^2} \geq P(\text{mistake})
\]

\[
\ln \delta \geq \ln 2 - 2N\epsilon^2
\]

\[
N \geq \frac{\ln(2/\delta)}{2\epsilon^2}
\]

Interesting! Let's look at some numbers!

• $\epsilon = 0.1$, $\delta=0.05$

\[
N \geq \frac{\ln(2/0.05)}{2 \times 0.1^2} \approx \frac{3.8}{0.02} = 190
\]
What if I have prior beliefs?

• **Billionaire says:** Wait, I know that the thumbtack is “close” to 50-50. What can you do for me now?

• **You say:** I can learn it the Bayesian way...

• Rather than estimating a single θ, we obtain a distribution over possible values of θ

![Graphs showing the change in belief distribution before and after observing flips.](image-url)
Bayesian Learning

- Use Bayes rule:
 \[P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})} \]

- Or equivalently:
 \[P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta) \]

- Also, for uniform priors:
 \[P(\theta) \propto 1 \quad P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) \]
 \[\rightarrow \text{reduces to MLE objective} \]
Bayesian Learning for Thumbtacks

\[P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta) \]

Likelihood function is Binomial:

\[P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

• What about prior?
 – Represent expert knowledge
 – Simple posterior form

• Conjugate priors:
 – Closed-form representation of posterior
 – For Binomial, conjugate prior is Beta distribution
Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H-1}(1-\theta)^{\beta_T-1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H}(1-\theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

$$P(\theta \mid \mathcal{D}) \propto \theta^{\alpha_H}(1-\theta)^{\alpha_T} \theta^{\beta_H-1}(1-\theta)^{\beta_T-1}$$

$$= \theta^{\alpha_H+\beta_H-1}(1-\theta)^{\alpha_T+\beta_T+1}$$

$$= Beta(\alpha_H+\beta_H, \alpha_T+\beta_T)$$
Posterior distribution

- **Prior:** $\text{Beta}(\beta_H, \beta_T)$
- **Data:** α_H heads and α_T tails
- **Posterior distribution:**
 \[
P(\theta \mid \mathcal{D}) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T)
 \]
Bayesian Posterior Inference

- Posterior distribution:

\[P(\theta \mid D) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- Bayesian inference:
 - No longer single parameter
 - For any specific \(f \), the function of interest
 - Compute the expected value of \(f \)

\[
E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid D) \, d\theta
\]

 - Integral is often hard to compute
MAP: Maximum a posteriori approximation

\[P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

\[E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) \, d\theta \]

- As more data is observed, Beta is more certain

- **MAP**: use most likely parameter to approximate the expectation

\[\hat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) \]

\[E[f(\theta)] \approx f(\hat{\theta}) \]
MAP for Beta distribution

\[P(\theta | D) = \frac{\theta^{\beta_H + \alpha_H - 1}(1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- MAP: use most likely parameter:

\[\hat{\theta} = \arg \max_{\theta} P(\theta | D) = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2} \]

- Beta prior equivalent to extra thumbtack flips
- As \(N \to 1 \), prior is “forgotten”
- But, for small sample size, prior is important!
What about continuous variables?

- **Billionaire says:** If I am measuring a continuous variable, what can you do for me?
- **You say:** Let me tell you about Gaussians...

\[
P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
Some properties of Gaussians

- Affine transformation (multiplying by scalar and adding a constant) are Gaussian
 - $X \sim N(\mu, \sigma^2)$
 - $Y = aX + b \Rightarrow Y \sim N(a\mu + b, a^2 \sigma^2)$

- Sum of Gaussians is Gaussian
 - $X \sim N(\mu_X, \sigma^2_X)$
 - $Y \sim N(\mu_Y, \sigma^2_Y)$
 - $Z = X + Y \Rightarrow Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$

- Easy to differentiate, as we will see soon!
Learning a Gaussian

- Collect a bunch of data
 - Hopefully, i.i.d. samples
 - e.g., exam scores

- Learn parameters
 - Mean: μ
 - Variance: σ

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

<table>
<thead>
<tr>
<th>x_i</th>
<th>Exam Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>99</td>
<td>89</td>
</tr>
</tbody>
</table>
MLE for Gaussian:

\[P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

- Prob. of i.i.d. samples \(D = \{x_1, \ldots, x_N\} \):

\[
P(D \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}
\]

\[\mu_{MLE}, \sigma_{MLE} = \arg \max_{\mu,\sigma} P(D \mid \mu, \sigma) \]

- Log-likelihood of data:

\[
\ln P(D \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} \right]
\]

\[
= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}
\]
Your second learning algorithm: MLE for mean of a Gaussian

• What’s MLE for mean?

\[
\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right] = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right] = - \sum_{i=1}^{N} \frac{(x_i - \mu)}{\sigma^2} = 0
\]

\[
= - \sum_{i=1}^{N} x_i + N\mu = 0
\]

\[
\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i
\]
MLE for variance

- Again, set derivative to zero:

\[
\frac{d}{d\sigma} \ln P(D \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right] \\
= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right] \\
= -\frac{N}{\sigma} + \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^3} \quad = 0
\]

\[
\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2
\]
Learning Gaussian parameters

- MLE:

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}^2_{MLE} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- BTW. MLE for the variance of a Gaussian is **biased**
 - Expected result of estimation is not true parameter!
 - Unbiased variance estimator:

$$\hat{\sigma}^2_{unbiased} = \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$
Bayesian learning of Gaussian parameters

• Conjugate priors
 – Mean: Gaussian prior
 – Variance: Wishart Distribution

• Prior for mean:

\[P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{-\frac{(\mu-\eta)^2}{2\lambda^2}} \]