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Your first consulting job

* A billionaire from the suburbs of Seattle asks you
a question:

— He says: | have thumbtack, if | flip it, what’s the
probability it will fall with the nail up?

— You say: Please flip it a few times:

*“‘;\; | ‘“';\; / a. *‘-;\:
(1; /\ (1; (1’»
— You say: The probability is:
e P(H)=3/5
— He says: Why???

— You say: Because...



Random Variables

 Arandom variable is some aspect of the world about
which we (may) have uncertainty

— R =ls it raining?
— D = How long will it take to drive to work?
— L =Where am |?

 We denote random variables with capital letters

 Random variables have domains
— Rin {true, false} (sometimes write as {+r, —r})
— Din [0, «)
— L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

Discrete random variables have distributions

P(T) P(W)
T P W P
warm | 0.5 sun 0.6
cold | 0.5 rain 0.1
fog 0.3
meteor 0.0

A discrete distribution is a TABLE of probabilities of values
A probability (lower case value) is a single number

P(W = rain) = 0.1 P(rain) = 0.1

Must have:
Vo P(x) > 0 ZP(:L') =1
X



Joint Distributions

« A joint distribution over a set of random variables: X1, Xo,...Xn
specifies a real number for each assignment (or outcome):

P(X1=z1,Xo=xo,.. Xpn==<x
(X1 1, Xo = 2, n = Tn) P(T, W)
P(xlax27'“$n) T W | P
— Size of distribution if n variables with domain sizes d? hot | sun | 0.4
hot | rain | 0.1
— Must obey:
P(gjl’ o, ... mn) >0 cold | sun | 0.2
cold | rain | 0.3

Z P(:Cl,xz,...a?n):].
(z1,22,...Tn)

* For all but the smallest distributions, impractical to write out




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables
Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W) T | P
- W = hot 0.5
not | sun | 04| p(t) =Y P(t,s) el
hot | rain 0.1 S P(W)

cold sun 0.2 — W P

cold | rain 03] P(s) =) P(t,s) sun 0.6
t

rain 0.4

P(X1==1) =Y P(X1=uz1,X0=x2)
40



Conditional Probabilities

« A simple relation between joint and conditional probabilities
— In fact, this is taken as the definition of a conditional probability

P(a,b)
P(a,b
P(G‘b) — (a’7 )
P(b)
P(T, W) P(a) P(b)
T W P
hot sun 0.4 P(W =r|T =c) =777
hot rain 0.1
cold sun 0.2
cold rain 0.3




P(WIT)

Conditional Distributions

« Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

W P
sun 0.8
rain 0.2

P(W|T = cold)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Y P
sun 0.4
rain 0.6




 Example:

P(W)

R P

sun 0.8

rain 0.2

The Product Rule

« Sometimes have conditional distributions but want the joint

(m) P(z,y) = P(zly)P(y)

P(x,y)
P(y)
P(D|W)
D W P
wet sun 0.1
dry sun | 0.9
wet rain 0.7
dry rain | 0.3

=)

P(D,W)

D W P
wet sun 0.08
dry sun | 0.72
wet rain | 0.14
dry rain | 0.06




Bayes' Rule

Two ways to factor a joint distribution over two variables:

P(z,y) = P(z|y)P(y) = P(y|z)P(x) That's my rule! }

Dividing, we get:

Paly) = 50

Why is this at all helpful?
— Lets us build one conditional from its reverse
— Often one conditional is tricky but the other one is simple
— Foundation of many practical systems (e.g. ASR, MT)

P(x)

In the running for most important ML equation!



Thumbtack — Binomial Distribution
 P(Heads) =0, P(Tails) =1-0

-
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* Flipsareiid.: p={x,|i=1..n}, P(D|6)=11,P(x,| )
— Independent events

— |Identically distributed according to Binomial
distribution

* Sequence D of o, Heads and o Tails

P(D|0) =0%(1—0)T



Maximum Likelihood Estimation

Data: Observed set D of o, Heads and o, Tails
Hypothesis: Binomial distribution
Learning: finding 0 is an optimization problem
— What'’s the objective function?

P(D|60) =0%H(1 — 0)°T
MLE: Choose 0 to maximize probability of D

AN

0 = arg m@ax P(D | 0)
arg m@ax In P(D | 6)



Your first parameter learning algorithm

H = argm@ax In P(D | 0)

= argm@ax INO“H(1 — )T

e Set derivative to zero, and solve!

d _d N ar
@InP(D\H)—dHUW (1—0)"7]
d
:@[@H|HH+O&T|H(1—9)]
d d
_&_H_ ar O é\ — *H
0 1-6 MLE ap + ar




But, how many flips do | need?

o
apg + ar

OvbE =

Billionaire says: | flipped 3 heads and 2 tails.
You say: 0 = 3/5, | can prove it!
He says: What if | flipped 30 heads and 20 tails?

You say: Same answer, | can prove it!

He says: What’s better?

You say: Umm... The more the merrier???
He says: Is this why | am paying you the big bucks???



A bound (from Hoeffding’s inequality)

oy
apg + ar

* For N =a,+a; and Oy g =

* Let 6 be the true parameter, for any £>0:

P(|§—0"|>¢) < 2e 2N

Exponential :
Decay!

) AProb. Qflg\/ligtagke 4




PAC Learning

 PAC: Probably Approximate Correct

* Billionaire says: | want to know the thumbtack 9,
within € = 0.1, with probability at least 1-0 = 0.95.

e How many flips? Or, how big do | set N?

P(|§—0"|>¢) < 2e 2N

—2Ne? '
0 > 2e > P(mistake) Interesting! Lets look at

INd > In2 — 2N¢? some numbers!

| (2/5) e ¢=0.1, 0=0.05
N
N == v = In(2/0.05) 38
¢ = 2%012 ~0.02

190




What if | have prior beliefs?

 Billionaire says: Wait, | know that the thumbtack
is “close” to 50-50. What can you do for me now?

* You say: | can learn it the Bayesian way...

* Rather than estimating a single 0, we obtain a
distribution over possible values of 0

In the beginning After observations

14/ | Observe flips
by | e.g.: {tails, tails}

E , >

[}]
@ 06|

1_

Beta pdf
o -
)] [¢,]

0.4+
0.2+

0 : : : : 0 0.2 04 0.6
0 0.2 04 0.6 0.8 1 parameter value
parameter value




Bayesian Learning

T Prior
* Use Bayes rule: Data Likelihood
| P §§Em
P D 9 P 9 li“ 2 hhoerhe 0
D) = E@IOPO)
osterior / D ( D)
gn; ' \ Normalization

02 0.4 0.6
parameter value

* Orequivalently: P(0 | D) o« P(D|0)P(6H)

* Also, for uniform priors:
-> reduces to MLE objective

P() x1 P(6|D)xP(D|06)



Bayesian Learning for Thumbtacks

PO |D) x P(D|0)P(H)

Likelihood function is Binomial:
P(D|0) = OH (1 — )T

 What about prior?
— Represent expert knowledge
— Simple posterior form
* Conjugate priors:
— Closed-form representation of posterior
— For Binomial, conjugate prior is Beta distribution



Beta prior distribution — P(0)

pPn—1(1 — 9)fr—1
~ Beta (B,
B(BH, BT) etalBr. Pr)

Beta(1,1) i6 Beta(2,2) Beta(3,2) . Beta(30,20)

P(6) =

* Likelihood function: p(D 1 0) = 9¥H (1 — 0)°T
* Posterior: P(0 | D) o« P(D|0)P(6H)
P(# | D) o< %7 (1 — )T 9Pr—1(1 — g)Pr~1

_ (gaH—I—BH—l(l . e)aT+6t+1

— Bet(l(OzH—l-ﬁH, OzT—|—ﬁT)



Posterior distribution

* Prior: Beta(By, Br)

* Data: a, heads and o tails

 Posterior distribution:
P(0 | D) ~ Beta(Bg

Beta(1,1)

Beta pdf
o o o

eta pdf

Beta(2,2)

eta pdf

o, Br

Beta(3,2)

Beta pdf

ar)

Beta(30,20)




Beta(30,20)

Bayesian Posterior Inference

e Posterior distribution:

rameter val

P(0 | D) ~ Beta(Bg + og, Br + aT)

* Bayesian inference:
— No longer single parameter
— For any specific f, the function of interest
— Compute the expected value of f

1
BIf(0)) = [ £(6)P(8 | D)do

— Integral is often hard to compute



Beta(30,20)

MAP: Maximum a posteriori
approximation

P(Q ‘ D) ~ Beta(ﬁH —|— aH,ﬁT —|— aT) ORI
1
Elr(0)] = /O F(O)P(O | D)do

* As more data is observed, Beta is more certain

« MAP: use most likely parameter to approximate
the expectation

f = arg max P(6 | D)

E[f(0)] ~ f(6)



Beta(30,20)

MAP for Beta distribution

atar valua

pfutan—1(1 _ g)Prtar—1 )
~ Beta(By—+ay, Br+or)

BBy + am, Br + ar)

PO | D) =

* MAP: use most likely parameter:

R ag + B —1
0 =argmax P(0 | D) = 5, Tar 15 2

« Beta prior equivalent to extra thumbtack flips
« As N — 1, prior is “forgotten”
« But, for small sample size, prior is important!



What about continuous variables?

* Billionaire says: If | am
measuring a
continuous variable,
what can you do for

104+
08}

06}

Py :(X)

04

me? t
* You say: Let me tell )
you about Gaussians... ~ " 7 " x 'ttt
R G
P(QE | Hy U) — e 202



Some properties of Gaussians

Affine transformation (multiplying by
scalar and adding a constant) are
Gaussian

— X~ N(w,0°%)
—Y=aX+b—=2>Y"~N(au+b,a’c?)

03

Py g:(X)

Sum of Gaussians is Gaussian : AL
— XNN(Mxlgzx) Y
— Y~ N(uy,0%)

— Z=X+Y 2> Z~ N(u+uy, 0%+0%)

Easy to differentiate, as we will see soon!



Learning a Gaussian

e Collect a bunch of data

—Hopefully, i.i.d. samples 1 95
—e.8., eXam SCcores 2 100

3 12

* Learn parameters
— Mean:
| - Iu 99 &9
—\Variance: o
1 —@—p?
P(m ‘ I, J) — & D2



1 (a2

MLE for Gaussian: P |u0) =

e 202
o\ 27

* Prob. of i.i.d. samples D={x,...,X\}:

1 \NV N @2
0'\/27'(')

UMLE,OMLE — afg m%XP(D | W, o)

Y

P(D!u,0)=<

* Log-likelihood of data:
1 \V N —@-w?
()

o\ 2T

InP(D | pu,0) = In




Your second learning algorithm:
MLE for mean of a Gaussian

e What’s MLE for mean?

d d
—InP(D|pu,0) = — |—NlnoVv2m —
du du
d _
= — |-NInoV2r| -
du t

(i — )
:_; — =0

N
—-jg:}ti%—pr,Z:O
i=1

(wiu)z}
o2
[(xi_‘N)Q

D52

1=1

]

1=1




MLE for variance

* Again, set derivative to zero:

d . d N (xz :LL)Q

_ d Y d (a:z-—u)Q

= E{—Nlna\/ﬂ}—i;dal > ]
N

N (s —p)*

——;+; — =0
D 1 ~\ 2
OMLE — NZ(%—LO

1=1




Learning Gaussian parameters

 MVILE: 1 é\f:
UMLE = — ) T
N/ 3
2 1< 2
OMLE = NZ(%‘—FL)-_
=

e BTW. MLE for the variance of a Gaussian is biased
— Expected result of estimation is not true parameter!

— Unbiased variance estimator: N

1
~2 _ ~\ 2
Tunbiased — N _ 1 Z (fcz — ,UJ)
1=1




Bayesian learning of Gaussian
parameters

* Conjugate priors
— Mean: Gaussian prior
— Variance: Wishart Distribution

* Prior for mean:

1 —(u—n)?
P(u | n,A) = e 2X°

AV 27




