CSES544
Data Management

Lectures 13
Datalog

CSE 544 - Winter 2024

Announcement

* Project Milestone due on Monday, 2/26

« HW3 extended to Thursday, 2/29

Project

* Project meetings w/ Dan: Friday, 3/1

* Printing the poster:

— Kyle can help on Monday, 3/4, OR ask a
colleague with a cse account

* Poster presentations: Wed, 3/6, 10-2pm
— In the atrium of Allen building
— Setup: 9:30; poster + demo (optional)
— Snacks, pizza will be provided

Datalog

CSE 544 - Winter 2024

Motivation

* RA cannot express iteration/recursion
SQL can, but clumsy, limited

 Data science needs iteration/recursion

« Datalog: designed for recursion

Datalog
Proposed in the 80’s as “Prolog for DBs”

Not adopted by industry, no standards

A darling of academics, hot topic in DB,
PL, Networking, ...

In HW4 we will use Souffle

Outline

« Syntax

» Getting familiar with Datalog

« Semantics

CSE 544 - Winter 2024

Actor(id, fname, Iname)

Casts(pid, mid) — Schema
Movie(id, name, year)

Datalog: Facts and Rules

CSE 544 - Winter 2024

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

CSE 544 - Winter 2024

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

CSE 544 - Winter 2024

10

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

CSE 544 - Winter 2024 11

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Find Movies made in 1940

CSE 544 - Winter 2024 12

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(z,f 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

CSE 544 - Winter 2024 13

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(z,f 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Find Actors who acted in Movies made in 1940

CSE 544 - Winter 2024 14

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(z,f 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q3(f,l) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

CSE 544 - Winter 2024 15

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(z,f 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q3(f,l) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

CSE 544 - Winter 2024 16

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(z,f 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q3(f,l) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie

Intensional Database Predicates = IDB = Q1, Q2, Q3
CSE 544 - Winter 2024 17

Anatomy of a Rule

head body
/\ A
- N
atom atom atom (aka predicate)

A N

Q2(f, 1) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

f, | = head variables
X,y,z = existential variables

CSE 544 - Winter 2024 18

More Datalog Terminology

Q(args) :- R1(args), R2(args),

« R(args,;) called an atom, or a relational predicate

* R(args,) evaluates to true or false

« Can also have arithmetic predicates, e.g. z > 1940

Datalog program

» Datalog program = several rules
* Rules may be recursive!

 Often one IDB is final answer

CSE 544 - Winter 2024

20

Outline

« Syntax

» Getting familiar with Datalog

« Semantics

CSE 544 - Winter 2024

21

AP |IO]I=2 DN

Example

R encodes a graph

T(X,y) - R(X,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

PO ININ|=-
AP |IO]I=2 DN

Example

R encodes a graph

T(X,y) - R(X,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

Initially:

T is empty.

PO ININ|=-
AP |IO]I=2 DN

Example

R encodes a graph

T(X,y) - R(X,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

First iteration:
R Initially: T=

T is empty.

\

> First rule generates this

Al |=2IN|IN]|—-
alsalalwl=a]d

AP |IO]I=2 DN

J

Second rule

generates nothing
(because T is empty)

Example

R encodes a graph

T(x,y) - R(x,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

Second iteration:

_ First iteration: T=
R= Initially: T= ; f
1 2 T is empty. > | 3
First rule generates this

2 1 1| 2 1] 4

2 |1 3 | 4

2 3 2 |3 4 | 5

1 4 1 4 1 1

3| 4 2 | 2

3 4 4 | 5 1] 3
4 5 5 | 4 Second rule generates this

L1 5

R encodes a graph

AP |IO]I=2 DN

Initially:
T is empty.

Example

T(X’y) .~ R(X’y)
T(x,y) :- R(x,2)

, T(z,)y)

Second iteration:

What does
it compute?

Third iteration:

First iteration: T=
T=

1 2

2 1

2 3

1 4

3 4

4 5

1
2
2
1
3
4
1
2
1
2
1
3

aloalsralw|d]alalr]lr]lwla]N

T=

1 2 }Both rules
2 1
2 3 1Y
1 4
> First rule
3 4
4 5
1 1
2 2
1 3
2 4 Second
1 5 rule
3 5
2 5

Example

T(X’y) - R(X’y)
T(X’y) - R(X’Z)’ T(Z’y)

R encodes a graph

Second iteration: T=
R= e First iteration: T= —— 1| 2
Initially: T= T 2 | 1
1 2 T is empty. > | 3 2 |3
1 4
2 1 1 2 1 4 3]
2 1 3 4 2 -
2 3 2 3 4 5)]
1 4 1| 4 1] 1 15
3 4 2 2] 3
3 4 4 5 1 3 >]
4 5 2 | 4
1 5
1 5
3 5
3 5
2 5

What does
it compute?

Third iteration:

Fourth
iteration

T=
(same)

No
new

facts.
DONE

lteration k computes pairs (x,y) connected by path of length < k

Discussion

« Datalog evaluation is iterative

* |t adds new facts at each iteration, stops
when nothing new to add

* |t always terminates, because the set of
possible facts is finite

CSE 544 - Winter 2024 29

How many iterations
until termination?

@

30

Example

How many iterations
until termination?

n iterations
" N

31

How many iterations
until termination?

n iterations
" N
//

32

How many iterations
until termination?

n iterations
" N
// . .
n iterations
" N

33

How many iterations
until termination?

n iterations
" N

— m n iterations
T -G

34

Example

How many iterations
until termination?

n iterations
" N

//
n iterations
W @ n iterations

35

How many iterations
until termination?

n iterations
" N

//
n iterations
W @ n iterations

How many iterations on an arbitrary graph G? 36

How many iterations
until termination?

n iterations
" N

//
n iterations
W @ n iterations

How many iterations on an arbitrary graph G? Diameter(G 37

Three Equivalent Programs

R encodes a grap

T(xy) - R(xy) Right linear
T(X’y) .- R(X’Z)’ T(Z’y)

T(x,y) = R(xy)
R= T(X,y) - T(Xaz), R(Z’y)

Left linear

T(X’y) - R(X’y)

Non-linear

T(X’y) - T(X’Z)’ T(Z’y)

PO ININ|=-
AP |IO]I=2 DN

How many iterations on an arbitrary graph G?

38

Three Equivalent Programs

R encodes a grap

T(xy) - R(xy) Right linear
T(va) .- R(X’Z)’ T(Z’y)

T(va) - R(X’y)
T(va) - T(X’Z)’ R(Z’y)

Left linear

#iterations =
diameter

T(va) - R(X’y)

Non-Ii
log(diameter)

PO ININ|=-
AP |IO]I=2 DN

How many iterations on an arbitrary graph G?

39

Multiple IDBs

R encodes a grap a

Find pairs of nodes (Xx,y)
connected by a path of even length

PO ININ|=-
AP |IO]I=2 DN

40

Multiple IDBs

R encodes a grap a

Find pairs of nodes (Xx,y)
connected by a path of even length

Odd(x,y) :- R(x,y)

Even(x,y) :- Odd(x,z), R(z,y)

Odd(x,y) :- Even(x,z), R(z,y)

AW IN|IN|[—~
alh|r|w|[=a|N

Two IDBs: Odd(x,y) and Even(x,y)

41

Labeled

Graph: -~ Regular Expressions
a(x,y), b(x,y) (5)

Find pairs of nodes connected
by a path whos labels match
(a.a.b™)*.a

42

Labeled

Graph: -~ Regular Expressions
a(x,y), b(x,y) (5)

Find pairs of nodes connected
by a path whos labels match
(a.a.b™)*.a

Automaton: .

(s1) .a
2 a

43

Labeled

Graph: Reqular Expressions
a(x,y), b(x,y) e a P

T,(x,y) = pairs of nodes
connected by a paths whose
labels match the language
accepted by the automaton
when the terminal state is s.

Find pairs of nodes connected
by a path whos labels match
(a.a.b™)*.a

Automaton: .

OISO O)

Labeled

Graph: Reqular Expressions
a(x,y), b(x,y) e a P

T,(x,y) = pairs of nodes
connected by a paths whose
labels match the language
accepted by the automaton
when the terminal state is s.

Find pairs of nodes connected T2(x,y) - a(x,y)
by a path whos labels match
(a.a.b™)*.a

Automaton: .

(s1) .a
2 a

Labeled

Graph: -~ Regular Expressions

a(x,y), b(x,y) 5)

Find pairs of nodes connected
by a path whos labels match
(a.a.b™)*.a

Automaton: .

(s1) .a
2 a

T,(x,y) = pairs of nodes
connected by a paths whose
labels match the language
accepted by the automaton
when the terminal state is s.

T2(X’y) .~ a(X’y)
T2(x,y) - T3(x,2),a(z,y)

Labeled

Graph: Reqular Expressions
a(x,y), b(x,y) e a P

T,(x,y) = pairs of nodes
connected by a paths whose
labels match the language
accepted by the automaton
when the terminal state is s.

Find pairs of nodes connected
by a path whos labels match
(a.a.b™)*.a

Automaton: .

(s1) .a
2 a

Labeled

Graph: Reqular Expressions
a(x,y), b(x,y) e a P

T,(x,y) = pairs of nodes
connected by a paths whose
labels match the language
accepted by the automaton
when the terminal state is s.

Find pairs of nodes connected
by a path whos labels match
(a.a.b™)*.a

Automaton: .

(s1) .a
2 a

Labeled

Graph: Reqular Expressions
a(x,y), b(x,y) e a P

T,(x,y) = pairs of nodes
connected by a paths whose
labels match the language
accepted by the automaton
when the terminal state is s.

Find pairs of nodes connected
by a path whos labels match
(a.a.b™)*.a

Automaton: .

(s1) .a
2 a

Recursion in SQL

* SQL supports a limited form of
recursion by using Common Table
Expression (CTE)

CSE 544 - Winter 2024

50

Recursion in SQL

T(X’y) - R(X’y)
T(X’y) - R(X’Z)’ T(Z’y)

T is called a CTE

with recursive T as
(select * from R
union
select distinct R.xas x, TyasyfromR, T
where R.y=T.x)
select * from T,

CSE 544 - Winter 2024

51

Recursion in SQL

T(X’y) .- R(X’y)
R(X, Y) T(xy) :- R(x,2), T(z,y)

If you forgot
‘distinct’, then
it diverges

with recursive T as
(select * from R
union
select distinct R.xas x, TyasyfromR, T
where R.y=T.x)

select * from T,

CSE 544 - Winter 2024 52

Recursion in SQL

Clumsy, restricted, inefficient:
* Only a single IDB
* Only linear query
* Only this structure:
— (non-recursive) union (recursive)
« Set or bag semantics (which diverges)

CSE 544 - Winter 2024

53

« Syntax

» Getting familiar with Datalog

« Semantics

Outline

CSE 544 - Winter 2024

54

Semantids of Datalog

Datalog has three equivalent ways to

define its semantics. We consider two:

» Least fixpoint semantics

« Minimal model semantics

CSE 544 - Winter 2024

95

Immediate Consequence
Operator

* The Immediate Consequence Operator

(ICO) is a query that takes all EDBs, all
IDBs, and computes a new state of the
|IDBs, by applying all rules

56

Immediate Consequence
Operator

* The Immediate Consequence Operator
(ICO) is a query that takes all EDBs, all
IDBs, and computes a new state of the
|IDBs, by applying all rules

ICO

T(X’y) .~ R(X’y)
T(X’y) - R(X,Z), T(Z,y) R(X' Y) U HX}’(R(X' Z) X T(Z, Y)) I

Y

Immediate Consequence
Operator

* A function f is monotone if:

R; €R},R, € R),...:
f(R{,R,,...) € f(R},R5,...)

CSE 544 - Winter 2024

58

Immediate Consequence
Operator

* A function f is monotone if:

R; €R},R, € R),...:
f(R{,R,,...) € f(R},R5,...)

 The ICO is a monotone function,
because it uses only ~, II, o,U

* The only non-monotone operator is -

CSE 544 - Winter 2024

59

1. Fixpoint Semantics

* X Is a fixpoint of a function f if f(x)=x

60

1. Fixpoint Semantics

* X Is a fixpoint of a function f if f(x)=x

» X IS the least fixpoint if for any other
fixpoint y, it holds thatx C y

61

1. Fixpoint Semantics

* X Is a fixpoint of a function f if f(x)=x

» X IS the least fixpoint if for any other
fixpoint y, it holds thatx C y

* Definition. The semantics of a datalog
program is the least fixpoint of the ICO

62

1. Fixpoint Semantics

X IS a fixpoint of a function f if f(x)=x

X IS the least fixpoint if for any other
fixpoint y, it holds thatx C y

Definition. The semantics of a datalog
program is the least fixpoint of the ICO

Next: we prove that it exists.

63

1. Fixpoint Semantics

Start: IDB;=0; t=0

Nalve evaluation Repeat:

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

1. Fixpoint Semantics

Start: IDB;=0; t=0
Repeat:

Naive evaluation

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: ¢ = IDB, cIDB, C IDB, C ...

1. Fixpoint Semantics

Start: IDB;=0; t=0

Nalve evaluation Repeat:

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: o = IDB, cIDB, € IDB, < ...
Proof by induction. @ = IDB, €IDB,

1. Fixpoint Semantics

Start: IDB;=0; t=0
Repeat:

Naive evaluation

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: o = IDB, cIDB, € IDB, < ...
Proof by induction. @ = IDB, €IDB,

If IDB,_, < IDB,
then IDB, = ICO(IDB,_,) € ICO(IDB,) = IDB,,,

1. Fixpoint Semantics

Start: IDB;=0; t=0
Repeat:

Naive evaluation

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: ¢ = IDB, cIDB, C IDB, C ...

1. Fixpoint Semantics

Start: IDB;=0; t=0
Repeat:

Naive evaluation

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: ¢ = IDB, <IDB, € IDB, < ...
Fact: There exists t, such that IDB; = IDB;, 14 Fixpoint!

1. Fixpoint Semantics

Nalve evaluation
algorithm

Start: IDB;=0; t=0

Repeat:
IDB;, = ICO(EDB, IDB;)
t=t+1

Until IDB; = IDB;_,

Fact: ¢ = IDB, <IDB, € IDB, < ...
Fact: There exists t, such that IDB; = IDB;, 14 Fixpoint!

Proof. Because the number of possible tuples from EDBs is finite.

1. Fixpoint Semantics

Start: IDB;=0; t=0
Repeat:

Naive evaluation

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: ¢ = IDB, <IDB, € IDB, < ...
Fact: There exists t, such that IDB; = IDB;, 14 Fixpoint!

1. Fixpoint Semantics

Nalve evaluation
algorithm

Start: IDB;=0; t=0

Repeat:
IDB;, = ICO(EDB, IDB;)
t=t+1

Until IDB; = IDB;_,

Fact: ¢ = IDB, <IDB, € IDB, < ...
Fact: There exists t, such that IDB; = IDB;, 14 Fixpoint!
Fact: if IDB is any fixpoint, then vt,IDB; < IDB

1. Fixpoint Semantics

Start: IDB;=0; t=0
Repeat:

Naive evaluation

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: ¢ = IDB, <IDB, € IDB, < ...

Fact: There exists t, such that IDB; = IDB;, 14 Fixpoint!
Fact: if IDB is any fixpoint, then vt,IDB; < IDB

Proof. Inductionont. @ =IDB, € IDB

1. Fixpoint Semantics

Start: IDB;=0; t=0
Repeat:

Naive evaluation

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: ¢ = IDB, <IDB, € IDB, < ...

Fact: There exists t, such that IDB; = IDB;, 14 Fixpoint!
Fact: if IDB is any fixpoint, then vt,IDB; < IDB

Proof. Inductionont. @ =IDB, € IDB

If IDB; € IDB then IDB;,; = ICO(IDB;) € ICO(IDB) = IDB

1. Fixpoint Semantics

Start: IDB;=0; t=0
Repeat:

Naive evaluation

algorithm IDB,,, = ICO(EDB, IDB,)
t=t+1
Until IDB, = IDB, ,

Fact: ¢ = IDB, €IDB, <€ IDB, c ...

Fact: There exists t, such that IDB; = IDB;, 14 Fixpoint!
Fact: if IDB is any fixpoint, then vt,IDB; < IDB

Corollary. The Least Fixpoint of the ICO exists, and is computed
by the Naive Algorithm

Datalog and Logic

We need:

* A Quick review of Boolean Logic, FO
» Datalog as logical sentences

CSE 544 - Winter 2024

76

Boolean Logic

* Propositional symbols: p, q, r, ...
* Boolean connectives: V,A, =, =

e PV A(QV-r)A=(pAQVT)

77

Boolean Logic

* Propositional symbols: p, g, r, ...

* Boolean connectives: V,A, =, =

* (pVaA(QV-r)A=(pAQVT)

* Things to know:
— De Morgan: =(p vV q) = =p A =q and dual
— Implications: p=>q=-pVq
— Therefore: =(p = q) = p A g

78

First Order Logic

« Relation symbols, variables, ops V,A, =, =,V, 3
« A sentence is a formula w/o free vars
* A model is a database that makes the formula true

79

First Order Logic

Relation symbols, variables, ops V,A, =, =,V, 3
A sentence is a formula w/o free vars
A model is a database that makes the formula true
What are the models of:
- 3x3y3z(R(x,y) AR(y, 2))
= EIXVy(R(X, y))

80

First Order Logic

Relation symbols, variables, ops V,A, =, =,V, 3
A sentence is a formula w/o free vars
A model is a database that makes the formula true
What are the models of:
- 3x3y3z(R(x,y) AR(y, 2))
= EIXVy(R(X, y))
Things to know:
— De Morgan —=vx(...) = 3x—(...)

81

First Order Logic

Relation symbols, variables, ops V,A, =, =,V, 3
A sentence is a formula w/o free vars
A model is a database that makes the formula true

What are the models of:
- 3x3y3z(R(x,y) AR(y, 2))
- EIXVy(R(X, y))
Things to know:
— De Morgan —=vx(...) = 3x—(...)
- Vx‘v’y(R(x, y) = T(X)) = VX(EIyR(X, y) = T(X))

82

First Order Logic

Relation symbols, variables, ops V,A, =, =,V, 3
A sentence is a formula w/o free vars
A model is a database that makes the formula true

What are the models of:
- 3x3y3z(R(x,y) AR(y, 2))
- EIXVy(R(X, y))
Things to know:
— De Morgan —=vx(...) = 3x—(...)
- Vx‘v’y(R(x, y) = T(X)) = VX(EIyR(X, y) = T(X))
Because VXVY(—IR(X, y) V T(X)) = Vx((Vy—R(x,y)) V T(x))

83

A datalog rule is a Sentence

This is why
a non-head

variable is called
“existential”

variable

Q1(y) :- Movie(x,y,z), z=1940’.

vxVyVvz [(Movie(x,y,z) and z=1940") = Q1(y)]

vy [(3x3z Movie(x,y,z) and z=1940’) = Q1(y)]

84

2. Minimal Model Semantics:

* Let &, be the sentence that is the
conjunction of all rules of the datalog
program P

« A model of P is an IDB instance that is a
model of &,

* The minimal model of P is a model that
IS contained In all other models

85

2. Minimal Model Semantics:

* Definition. The minimal model
semantics of a program P is the minimal
model of P

* Theorem. The minimal model exists
and coincides with the least fixpoint of P

86

R encodes a graph

Example

T(X’y) - R(X’y)
T(X’y) - R(X’Z)’ T(Z’y)

Example

T(X’y) - R(X’y)
T(X’y) - R(X’Z)’ T(Z’y)

R encodes a graph

1. Least fixpoint semantics:
@ Repeat Tt+1(Xl Y) = R(Xr Y) U ny(R(X, Z) X T(Z, Y))

Example

T(X’y) - R(X’y)
T(X’y) - R(X’Z)’ T(Z’y)

R encodes a graph

1. Least fixpoint semantics:

@ Repeat Ty 1(x,y) = R(x,y) Ul (R(x,2) X T(z,y))
R=
2 2. Minimal model semantics
which one is a model? A minimal model?
2 3 ° 1 1 2 1 2 1 1
2 1 2 1 1 2
2 3
2 3 2 3 1 3
1 1
2 2
1 3 3 1
2 3 3 2
3 3

Example

T(X’y) - R(X’y)
T(X’y) - R(X’Z)’ T(Z’y)

R encodes a graph

1. Least fixpoint semantics:
@ Repeat Tt+1(Xl Y) = R(Xr Y) U ny(R(X, Z) X T(Z, Y))

R:
2 2. Minimal model semantics
which one is a model? A minimal model?
2 3 5 1 1 2 1 2 1 1
2 1 2 1 1 2
2 3
2 3 2 3 1 3
1 1
This is f 2 -~
the minimal » » » »
model S S

Datalog Semantics

* The fixpoint semantics tells us how to
compute a datalog query

 The minimal model semantics is more
declarative: only says what we get

» Analogous to SQL and RA

Next week: aggregates, negation, semi-naive evaluation

