
CSE544
Data Management

Lecture 12

CSE 544 - Winter 2024 1

Annoucements

• No lecture Monday, 2/19
• No lecture Wednesday, 2/21
• Makeup lecture Friday, 2/23 – Gates371
• Also Friday 2/23: HW3 is due
• Project milestone due Monday, 2/26

CSE 544 - Winter 2024 2

Query Optimization

CSE 544 - Winter 2024 3

Three major components:

1. Search space last week

2. Cardinality and cost estimation last lecture

3. Plan enumeration algorithms today

Paper Discussion

• How Good Are Query Optimizers,
Really? VLDB’2015

CSE 544 - Winter 2024 4

Questions in the paper

• How good are cardinality estimators?

• How important are they for the
optimizer?

• How large does the plan space need to
be?

CSE 544 - Winter 2024 5

[How good are they]

Cardinality Estimators

• Standard database benchmark: TPC-H

• They designed a new benchmark. Why?

CSE 544 - Winter 2024 6

[How good are they]

Cardinality Estimators

• Standard database benchmark: TPC-H

• They designed a new benchmark. Why?

• Because TPC-H is synthetically
generated, unrealistically uniform

CSE 544 - Winter 2024 7

[How good are they]

Cardinality Estimators

What type of queries are in IMDB/JOB?

8

[How good are they]

Cardinality Estimators

What type of queries are in IMDB/JOB?

• For CE: select * multijoin queries
• For runtime: replace * with min Why?

9

[How good are they]

Cardinality Estimators

What type of queries are in IMDB/JOB?

• For CE: select * multijoin queries
• For runtime: replace * with min Why?

• Materializing * is expensive…
• …and postgres does not push min

down the plan 10

[How good are they]

Single Table Estimation

11

[How good are they]

Single Table Estimation

12

[How good are they]

What technique
helped here?
(conjectured)

Single Table Estimation

13

[How good are they]

What technique
helped here?
(conjectured)

Sampling.
E.g. Hyper:
1000 rows

Single Table Estimation

14

[How good are they]

Single Table Estimation

15

[How good are they]

Why queries
still lead to poor

estimates?

Single Table Estimation

16

[How good are they]

Why queries
still lead to poor

estimates?

Low selectivity:
10-5 – 10-6

Single Table Estimation

• 1d Histograms:
– Good for single equality or range predicate
– Poor for multiple predicates
– Useless for LIKE

• Samples:
– Good for multiple predicates, LIKE
– Poor for low selectivity predicates

17

[How good are they]

Joins (0 to 6)

CSE 544 - Winter 2024 18

[How good are they]

Joins (0 to 6)

19

[How good are they]

CSE 544 - Winter 2024

Estimation of Joins

• Error increases exponentially with the
number of joins
– This was known from [Ioannidis’91]

• Underestimate, because of positive
correlations

CSE 544 - Winter 2024 20

[How good are they]

TPC-H v.s. Real Data (IMDB)

CSE 544 - Winter 2024 21

[How good are they]

TPC-H v.s. Real Data (IMDB)

DATA516/CSED516 - Fall 2021 22

[How good are they]

Huge errors Perfect estimates

Impact of Mis-estimates

• Question: how much does a good/poor
CE matter for the quality of a query plan

• How did they measure that?

CSE 544 - Winter 2024 23

Impact of Mis-estimates

• Question: how much does a good/poor
CE matter for the quality of a query plan

• How did they measure that?
– Inject into postgres other systems’

estimates – won’t discuss this
– Inject into postgres true cardinalities; call it

optimal plan, compare with regular plan
• Two configs of indexes: PK and PK+FK

CSE 544 - Winter 2024 24

Impact of Mis-estimates

25

[How good are they]

PK indexes

Impact of Mis-estimates

26

[How good are they]

PK indexes Most
queries: no
slowdown

w.r.t optimal

Impact of Mis-estimates

27

[How good are they]

PK indexes Most
queries: no
slowdown

w.r.t optimal
”Better that optimal”

how can that be?

Impact of Mis-estimates

28

[How good are they]

PK indexes

Which queries
had major slowdown?

Impact of Mis-estimates

29

[How good are they]

PK indexes

Impact of Mis-estimates

30

[How good are they]

PK indexes

Still some queries
significantly slower.

Why?

Impact of Mis-estimates

31

[How good are they]

PK indexes

Impact of Mis-estimates

Indexes on PK only
• Low sensitivity to CE, because the “fact”

table needs to be scanned anyway
• Plans most sensitive to CE errors:

– Plans with nested-loop joins
– Hash-table preallocation

• Discuss “robust query optimization”

CSE 544 - Winter 2024 32

Impact of Mis-estimates

33

[How good are they]

FK/PK indexes

Impact of Mis-estimates

34

[How good are they]

FK/PK indexes

Better runtime,
but more plans
available: more

sensitive to
CE errors

Discussion

• When PK indexes only, optimizer
chooses a good plan anyway; impact of
CE is limited; confirmed by others too

• When indexes on PK+FK, performance
improves, but sensitivity to CE higher

CSE 544 - Winter 2024 35

Cardinalities to Cost

36

[How good are they]

Cardinalities to Cost

37

[How good are they]

Postgres
cost

Cardinalities to Cost

38

[How good are they]

Postgres
cost

No I/O,
keep only

CPU

Cardinalities to Cost

39

[How good are they]

Their own
simple
formula

Postgres
cost

No I/O,
keep only

CPU

Cardinalities to Cost

• CE accounts for
largest errors

• Cost models: both
simple or complex
are fine

40

[How good are they]

Their own
simple
formula

Postgres
cost

No I/O,
keep only

CPU

Query Optimization

CSE 544 - Winter 2024 41

Three major components:

1. Search space last week

2. Cardinality and cost estimation last lecture

3. Plan enumeration algorithms today

Two Types of Optimizers

• Heuristic-based optimizers
– Limited, used only by the simplest DBMS

• Cost-based optimizers (next)
– Enumerate query plans, return the cheapest

CSE 544 - Winter 2024 42

Two Types of Plan
Enumeration Algorithms

• Dynamic programming
– Based on System R [Selinger 1979]
– Join reordering algorithm

• Cascades optimizer

43

System R Optimizer
For each subquery Q Í {R1, …, Rn}, compute best plan:

• Step 1: Q = {R1}, {R2}, …, {Rn}

• Step 2: Q = {R1,R2}, {R1,R3}, …, {Rn-1, Rn}

• …

• Step n: Q = {R1, …, Rn}

CSE 544 - Winter 2024 44

Details

For each subquery Q Í{R1, …, Rn} store:

• Estimated Size(Q)

• A best plan for Q: Plan(Q)

• The cost of that plan: Cost(Q)
CSE 544 - Winter 2024 45

One plan
 for each
 “interesting
 order”

Details

Step 1: single relations {R1}, {R2}, …, {Rn}
• Consider all possible access paths:

– Sequential scan, or
– Index 1, or
– Index 2, or
– …

• Keep optimal plan for each “interesting order”

CSE 544 - Winter 2024 46

Details

Step k = 2…n:
For each 𝑄 = {𝑅!! , … , 𝑅!"}
• For each j=1,…,k:

– Consider all plans of the form 𝑃 = 𝑃! ⋈ 𝑃"
– 𝐶𝑜𝑠𝑡 𝑃 = 𝐶𝑜𝑠𝑡 ⋈ + 𝐶𝑜𝑠𝑡(𝑃!) + 𝐶𝑜𝑠𝑡(𝑃")
– Keep the cheapest plan, or
– Keep multiple plans, for “interesting orders”

47

Runtime: exponential in n.
Mitigated by: no cartesian products, restricted plan shapes

Importance of the Plan Space

• Do we need to explore a large space, or
should we pick a plan at random?

• Do we need bushy trees, or are left-, or
right-, or zigzag-trees enough?

• Do we need dynamic programming, or
is greedy enough?

48

[How good are they]

CSE 544 - Winter 2024 49

[How good are they]

CSE 544 - Winter 2024 50

[How good are they]

pdf of the
cost: lots of

very bad plans

CSE 544 - Winter 2024 51

[How good are they]

CSE 544 - Winter 2024 52

[How good are they]
Generally, not

much worse than
optimal…

53

[How good are they]
Generally, not

much worse than
optimal…

…except here.
Right-deep plans

prevent index joins.
⋈

⋈

⋈

R

S
T U

Yes: index join

No: index join

No: index join

CSE 544 - Winter 2024 54

[How good are they]

Cascades Optimizer

• Extends join ordering to full rewrite

• Supported by some of the most
advanced DBMS today: SQL Server,
Cocroach Lab; (not sure about DuckDB)

• Mostly “insider knowledge”

CSE 544 - Winter 2024 55

Cascades Optimizer

• Main idea: apply optimization rules:
 Q à Q’

• But keep both Q and Q’

• “Memo” data structure: reuses subplans

CSE 544 - Winter 2024 56

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

Initialize Memo
w/ one (naïve)

plan

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

1 Scan R

1

Initialize Memo
w/ one (naïve)

plan

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

1 Scan R

2 Select[A=3] 1

1

2

Initialize Memo
w/ one (naïve)

plan

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6
1

2
3

4

5

6

7

Initialize Memo
w/ one (naïve)

plan

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6
1

2
3

4

5

6

7

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6
1

2
3

4

5

6

7

Apply an
optimization

rule

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎%&'

⋈$

Apply an
optimization

rule

1

2
3

4

5

6

7

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎%&'

⋈$

8 Select[D=5] 5

1

2
3

4

5

6

7

8

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

⋈$

𝜎%&'

𝜎(&)

R
S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎%&'

⋈$

8 Select[D=5] 5

Join[C=C] 4,8
1

2
3

4

5

6

7

8

Still 7

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

𝜎(&)

R
S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎%&'

⋈$

8 Select[D=5] 5

Join[C=C] 4,8
1

2
3

4

5

8

7

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

𝜎(&)

R S T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎%&'

⋈$

8 Select[D=5] 5

Join[C=C] 4,8
1

2

3

4

5

8

7

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

𝜎(&)

R S T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎%&'

⋈$

8 Select[D=5] 5

Join[C=C] 4,8

⋈#

⋈$

1

2

3

4

5

8

7

Apply another
rule

The Memo

select *
from R, S, T
where R.B=S.B
 and S.C=T.C
 and R.A = 3
 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈#

𝜎(&)

R S T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎%&'

⋈$

8 Select[D=5] 5

Join[C=C] 4,8

⋈#

⋈$

Join[B=B] 2,9

9 Join[C=C] 3, 8

1

2

3

4

5

8

7

9

Conclusions

• Query optimizers: some of the most
complex systems in use today

CSE 544 - Winter 2024 70

Query optimization is not rocket science.
If you fail at query optimization, they send
you to build rockets.
 Anonymous

