
CSE544
Data Management
Lecture 3: Data Models

CSE 544 - Winter 2024 1

Announcements

• Review of “What goes around…” today

• HW1 is due tonight

• Project teams due Monday; see Ed

2

Where We Are

• We are done with SQL; Please continue
to read and learn on your own

• Today: data models, and why the
relational model wins

• Next lectures: query optimization,
execution

CSE 544 - Winter 2024 3

References

• M. Stonebraker and J. Hellerstein. What
Goes Around Comes Around. In
"Readings in Database Systems" (aka
the Red Book). 4th ed.

CSE 544 - Winter 2024 4

Data Model Motivation
• Applications need to model real-world data

• User somehow needs to define data to be stored
in DBMS

• Data model enables a user to define the data
using high-level constructs without worrying about
many low-level details of how data will be stored
on disk

CSE 544 - Winter 2024 5

Outline
• Early data models

– IMS
– CODASYL

• Relational Model in some detail

• Data models that followed the relational model

CSE 544 - Winter 2024 6

Early Proposal 1: IMS*
• What is it?

7* IBM Information Management System

Early Proposal 1: IMS*
• Hierarchical data model

• Record
– Type: collection of named fields with data types
– Instance: must match type definition
– Each instance has a key
– Record types arranged in a tree

• IMS database is collection of instances of record
types organized in a tree

8* IBM Information Management System

IMS Example
• Figure 2 from “What goes around comes around”

CSE 544 - Winter 2024 9

What does
this mean?

IMS Example
• Figure 2 from “What goes around comes around”

CSE 544 - Winter 2024 10

What does
this mean?

Supp Part Part … Supp Part Part … …

File on disk:

IMS Example
• Figure 2 from “What goes around comes around”

CSE 544 - Winter 2024 11

What does
this mean?

Supp Part Part … Supp Part Part … …

File on disk:

Part Supp Supp … Part Supp Supp … …

IMS Limitations

IMS Limitations
• Tree-structured data model

– Redundant data; existence depends on parent

IMS Limitations
• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface
– User must specify algorithm to access data

IMS Limitations
• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface
– User must specify algorithm to access data

• Very limited physical independence
– Phys. organization limits possible operations
– Application programs break if organization changes

• Some logical independence but limited

Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?

CSE 544 - Winter 2024 16

Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?

• Each record has a hierarchical sequence key (HSK)

• HSK defines semantics of commands:
– get_next; get_next_within_parent

• DL/1 is a record-at-a-time language
– Programmers construct algorithm, worry about optimization

CSE 544 - Winter 2024 17

Data storage
How is data physically stored in IMS?

18

Data storage
How is data physically stored in IMS?

• Root records
– Stored sequentially (sorted on key)
– Indexed in a B-tree using the key of the record
– Hashed using the key of the record

• Dependent records
– Physically sequential
– Various forms of pointers

• Selected organizations restrict DL/1 commands
– No updates allowed due to sequential organization
– No “get-next” for hashed organization

19

Data Independence

What is it?

20

Data Independence

What is it?

• Physical data independence: Applications
are insulated from changes in physical
storage details

• Logical data independence: Applications
are insulated from changes to logical
structure of the data

21

Lessons from IMS

• Physical/logical data independence needed

• Tree structure model is restrictive

• Record-at-a-time programming forces user to
do optimization

CSE 544 - Winter 2024 22

Early Proposal 2: CODASYL
What is it?

CSE 544 - Winter 2024 23

Early Proposal 2: CODASYL
What is it?
• Networked data model

• Primitives are also record types with keys
• Record types are organized into network
• Multiple parents; arcs = “sets”
• More flexible than hierarchy

• Record-at-a-time data manipulation language

CSE 544 - Winter 2024 24

CODASYL Example
• Figure 5 from “What goes around comes around”

CSE 544 - Winter 2024 25

CODASYL Limitations

• No data independence: application programs
break if organization changes

• Record-at-a-time: “navigate the hyperspace”

CSE 544 - Winter 2024 26

Outline
• Early data models

• Relational Model in some detail

• Data models that followed the relational model

CSE 544 - Winter 2024 27

Relational Model Overview
Ted Codd 1970

• What was the motivation? What is the model?

Relational Model Overview
Ted Codd 1970

• Motivation: logical and physical data independence

• Store data in a simple data structure (table)
• Access data through set-at-a-time language
• No need for physical storage proposal

Great Debate

• Pro relational
– What were the arguments?

• Against relational
– What were the arguments?

• How was it settled?

CSE 544 - Winter 2024 30

Great Debate
• Pro relational

– CODASYL is too complex
– No data independence
– Record-at-a-time hard to optimize
– Trees/networks not flexible enough

• Against relational
– COBOL programmers cannot understand relational languages
– Impossible to implement efficiently

• Ultimately settled by the market place

CSE 544 - Winter 2024 31

Key Elements of the
Relational Model

• Declarative query language
– First Order Logic (FO)
– Later: SQL

• Physical data independence
– From FO/SQL to Relational Algebra
– Optimization

• Design principles:
– Normalization, to remove anomalies

CSE 544 - Winter 2024 32

First Order Logic

A formula consists of
• Variables: x,y,z, …
• Relation names: R, S, …
• Relational atoms: R(x,y,z), S(x,w), …
• Connectives: ∨,∧, ¬,⇒, ∀, ∃
A sentence is a formula w/o free variables
A model = instance for all relation names

CSE 544 - Winter 2024 33

Example: Sentences
A graph:

1

2

4

3

5

Example: Sentences
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

1

2

4

3

5

Model

Example: Sentences
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

∃𝑥∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒 𝑦, 𝑥)

1

2

4

3

5

Sentence

Model

Example: Sentences
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

∃𝑥∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒 𝑦, 𝑥)

1

2

4

3

5

True or false?

Example: Sentences
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

∃𝑥∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒 𝑦, 𝑥)

1

2

4

3

5

True or false?
True

Example: Sentences
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

∃𝑥∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒 𝑦, 𝑥)

1

2

4

3

5

True or false?

∃𝑥∃𝑦∃𝑧	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒 𝑦, 𝑧 ∧ 𝐸𝑑𝑔𝑒(𝑧, 𝑥))

∀𝑥∀𝑦(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ⇒ ∃𝑧	𝐸𝑑𝑔𝑒 𝑧, 𝑦)

True

Example: Sentences
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

∃𝑥∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒 𝑦, 𝑥)

1

2

4

3

5

True or false?

∃𝑥∃𝑦∃𝑧	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒 𝑦, 𝑧 ∧ 𝐸𝑑𝑔𝑒(𝑧, 𝑥))

∀𝑥∀𝑦(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ⇒ ∃𝑧	𝐸𝑑𝑔𝑒 𝑧, 𝑦)

True

True

False

Example: Formula
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

1

2

4

3

5

∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧))

Example: Formula
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

1

2

4

3

5

∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧))

Formula
(x,z are free)

Example: Formula
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

1

2

4

3

5

∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧))

Neither true nor false.
A predicate on x,z. A query!

Formula
(x,z are free)

Example: Formula
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

1

2

4

3

5

∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)) Values x,z where true
x z
1 1
1 5
1 3
… …

Formula
(x,z are free)

Neither true nor false.
A predicate on x,z. A query!

Discussion

• Codd’s proposal:
– A database is a model
– A query is a formula

• But FO is too abstract for programmers

• SQL was designed to be more user-
friendly

CSE 544 - Winter 2024 45

FO v.s. SQL
src dst

1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

1

2

4

3

5

𝑄 𝑥, 𝑧 = ∃𝑦	(𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒 𝑦, 𝑧)

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src;

Discussion

• FO = very concise, but too abstract
• SQL

– “Walk up and read”
– Easy to express ∃
– Harder to express ∀
– Bag semantics
– Aggregates
– Etc, etc

CSE 544 - Winter 2024 47

Relational Algebra

• FO and SQL are declarative languages
– Users say what they want

• System translates to Relational Algebra
– RA specifies how to evaluate a query

CSE 544 - Winter 2024 48

Relational Algebra

Five operators:
• Selection 𝜎
• Projection Π
• Join or cartesian product ⋈, ×
• Union ∪
• Difference −

CSE 544 - Winter 2024 49

RA by Example
Π!(𝑅 ⋈"#$ 𝜎%&'' 𝑆)

RA by Example
Π!(𝑅 ⋈"#$ 𝜎%&'' 𝑆)

Π!

⋈"#$

𝑅 𝜎%&''

𝑆

RA Plan,
or Query Plan

RA by Example
Π!(𝑅 ⋈"#$ 𝜎%&'' 𝑆)

Π!

⋈"#$

𝑅 𝜎%&''

𝑆

A B

1 10
1 20
2 20

R=

C D

10 33
10 44
20 55
20 66
20 77
30 66

S=

RA by Example
Π!(𝑅 ⋈"#$ 𝜎%&'' 𝑆)

Π!

⋈"#$

𝑅 𝜎%&''

𝑆

A B

1 10
1 20
2 20

R=

C D

10 33
10 44
20 55
20 66
20 77
30 66

S=

C D
20 66
20 77
30 66

RA by Example
Π!(𝑅 ⋈"#$ 𝜎%&'' 𝑆)

Π!

⋈"#$

𝑅 𝜎%&''

𝑆

A B

1 10
1 20
2 20

R=

C D

10 33
10 44
20 55
20 66
20 77
30 66

S=

C D
20 66
20 77
30 66

A B C D

1 20 20 66
1 20 20 77
2 20 20 66
2 20 20 77

RA by Example
Π!(𝑅 ⋈"#$ 𝜎%&'' 𝑆)

Π!

⋈"#$

𝑅 𝜎%&''

𝑆

A B

1 10
1 20
2 20

R=

C D

10 33
10 44
20 55
20 66
20 77
30 66

S=

C D
20 66
20 77
30 66

A B C D

1 20 20 66
1 20 20 77
2 20 20 66
2 20 20 77

A

1
2

Final
output

Translation

• Every FO formula can be translated into
an equivalent RA expression

CSE 544 - Winter 2024 56

Translation

• Every FO formula can be translated into
an equivalent RA expression

• Every SQL query can be translated into
an expression in Extended RA:
– Bag semantics
– Aggregates
– Duplicate Elimination
– Etc

CSE 544 - Winter 2024 57

Query Plans

• Logical query plan:
– An RA expression

• Physical query plan:
– Refine logical operators to a physical ones
– In other words, choose algorithms

CSE 544 - Winter 2024 58

Query Engine

• Convert SQL to RA called Logical Plan

• Optimize Logical Plan

• Convert Logical Plan to Physical Plan

• Execute Physical Plan
CSE 544 - Winter 2024 59

SQL…
SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

We say What
we want

…to Logical Plan...

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Specifies
operation

order
We say What

we want

…Optimization…

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ
price>100

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

More about this
next lectures

Push
selections

down

..Physical Plan…

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ
price>100

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Index-join

hash-join

hash-based

on-the-fly

Index-scan

Sequential-scan

Says
how to
get it

We say What
we want

..Physical Plan…

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ
price>100

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Index-join

hash-join

hash-based

on-the-fly

Index-scan

Sequential-scan

This is what
you see when

you run EXPLAIN

Physical Data Independence

Separate the logical description of the
data and queries from the concrete
physical layout of the data and algorithms
for running the query

CSE 544 - Winter 2024 65

Logical Data Independence

• Separates the logical schema of the
database from that of the application

• Allows database logical schema to
change without affecting applications

• Supported in SQL through views

CSE 544 - Winter 2024 66

View Example

CSE 544 - Winter 2024 67

CREATE VIEW Big_Parts AS
 SELECT * FROM Part
 WHERE psize > 10;

View definition:

Part(pno,pname,psize,pcolor)

View Example

CSE 544 - Winter 2024 68

CREATE VIEW Big_Parts AS
 SELECT * FROM Part
 WHERE psize > 10;

Big_Parts(pno,pname,psize,pcolor)

View definition:

Virtual table:

Part(pno,pname,psize,pcolor)

View Example

CSE 544 - Winter 2024 69

Part(pno,pname,psize,pcolor)

CREATE VIEW Big_Parts AS
 SELECT * FROM Part
 WHERE psize > 10;

Big_Parts(pno,pname,psize,pcolor)

SELECT *
FROM Big_Parts
WHERE pcolor='blue';

View definition:

Virtual table:

Querying the view:

Two Types of Views

• Virtual views:
– Default in SQL
– CREATE VIEW xyz AS …
– Computed at query time

• Materialized views:
– Some SQL engines support them
– CREATE MATERIALIZED VIEW xyz AS
– Computed at definition time

CSE 544 - Winter 2024 70

What are
the pros
and cons?

Relational Model Takeaways

• Simple relations, declarative language

• Optimizer plays key role

• Please read on your own:
– E/R diagrams (needed for hw1)
– Schema normalization (BCNF, 3NF)

71

Outline
• Early data models

• Relational Model in some detail

• Data models that followed the relational model

CSE 544 - Winter 2024 72

Other Data Models

• Entity-relationship

• Object-relational

• Semistructured

• Key-value pairs
CSE 544 - Winter 2024 73

