
Benchmarking of Relational and NoSQL Databases to
Determine Constraints for Querying Robot Execution Logs

[Final Report]

Alexander J. Fiannaca
Computer Science & Engineering

University of Washington
fiannaca@cs.uw.edu

Justin Huang
Computer Science & Engineering

University of Washington
jstn@cs.uw.edu

ABSTRACT
Managing the massive amount of data which flows through
the Robot Operating System (ROS) network during oper-
ation of a robot is a very challenging task. This has his-
torically been handled by simply storing every message in a
flat file (a.k.a. a ROS “bag file”) which acts as a recording
which can later be played back. Unfortunately the rosbag
system is not suitable for many useful tasks like querying
the messages sent during a certain period to find points in
time at which the robot entered or left specific states. In this
work, we benchmark several databases with varying storage
models in order to determine the best data store for a future
application which will subsume the current rosbag system.
Our benchmarking study examines the potential through-
put of the MongoDB, PostgreSQL, and SQLite3 databases
by stress testing each database with workloads that vary the
number of messages (rows or documents inserted), the size
of messages (size of each insert), and the number of topics
(tables or collections being inserted to simultaneously). Ad-
ditionally, each database is tested against exemplar queries
that could be useful for roboticists, and runtimes are re-
ported. Based on these benchmarking studies, recommen-
dations are made for the development of future ROS message
logging systems.

1. INTRODUCTION
ROS is a popular open-source programming system for robo-
tics, widely used in research circles. In ROS, computation
is split across nodes, which are processes that may be run-
ning across one or more machines. Each node communicates
with other nodes through a publisher - subscriber style net-
work by sending messages over named channels called top-
ics using typed data structures similar to Google Protocol
Buffers. Given a list of topics, messages on these topics can
be saved into a custom format, called bag files, by a util-
ity called rosbag. To analyze the data stored in bag files,
the developer must write code to iterate over the recorded
data in chronological order. This means that the devel-
oper cannot use higher level languages like SQL to trans-
form or query the data. This limitation of bag files has
several implications. Primarily these issues surround cases
in which researchers want to either find and analyze a sub-
set of the recorded message topics (i.e. only message on
the topics base odometry/odom and tf), or select messages
which meet particular predicates (i.e. messages occurring
within five minutes of the robot entering a particular state).
In these cases developers must either write one-off scripts

Figure 1: Example of the Architecture of a ROS Network.
Nodes are Linux processes which each handle independent
tasks. Node communicate by publishing to and subscribing
to channels called topics. The master node is a special node
in charge of managing topics, publishers, and subscribers.

to iterate over the messages in the bag file, or use a graph-
ical interface to “replay” the messages and manually anno-
tate the times between which they want to gather available
messages. Clearly, these approaches are neither reusable or
efficient. This problem could be solved if there was a utility
that saved the data directly to a database with rich querying
capabilities that could allow the developers to more easily
access the data of interest through a high level SQL-like data
access language.

In the context of the Robot Operating System, development
of a database-backed message logging system is faced with
several interesting challenges. First and foremost, the ROS
publisher-subscriber network can potentially see data flows
on the order of several gigabytes per minute when running
a robot such as the PR2. Therefore, an important design
decision for this utility would be to ensure the backend data
store is capable of persisting large volumes of data in real-
time. Additionally, robotics researchers often only have the
computer running on the robot (server) and a separate desk-
top (client) in terms of hardware. Since robotics researchers
often do not have a dedicated cluster for storing the data
coming off of their robot, the backend data store for this

utility needs to be able to provide this high-volume storage
while only running on several machines (not a large cluster).
Finally, much of the data to be stored consists of numerical
values (joint angles, transpose vectors, audio packets, etc)
and image-like data (laser scans, point clouds, stereo im-
ages, etc.), the data store needs to support rich querying
interfaces which make it easy to analyze this type of data.
With these considerations in mind, this work evaluates three
potential database systems against three main criteria:

1. What is the maximum throughput of each database
under loads consisting of varying numbers of topics,
sizes of messages, and frequency of messages?

2. Given a real world bag file dataset (specifically, the
MIT Stata dataset), how well does the database per-
form (e.g. percent of messages persisted) when run in
a single machine configuration?

3. How rich is the query interface supported by the data-
base, and how fast can typical robotics queries be ex-
ecuted? (e.g. “Select all non-overlapping 1 minute
intervals where the robot was in state X”, or “Select
all messages beginning 5 minutes before each system
error was detected”)

2. RELATED WORK
Niemueller et al. [3] developed an integration between ROS
and MongoDB and benchmarked it. Our experiments use a
version of their software, which we improved and modified
for the purposes of running our own benchmarks. In their
study, they showed that their system was comparable in
performance to the native rosbag utility, with improved CPU
and memory usage, and 30% write throughput overhead.
However, the paper did not attempt to find the maximum
throughput supported by their system. Additionally, they
did not compare the performance of their system to that
of a relational database. Our work addresses both of these
questions.

In a related approach, Dietrich et al. [1] developed and
benchmarked an integration between ROS and Cassandra,
another popular NoSQL database. Their experiments found
that their system outperformed a different ROS MongoDB
system from the one described above, although the Mon-
goDB system in question was only a data warehouse which
stored messages as binary files and therefore had no querying
capabilities. In this work, they also did not report the max-
imum throughput of their system, or do a comparison with
relational databases. Importantly, the work of Dietrich et al.
was founded on conclusions from a 2012 study by van der
Veen et al. [4] indicating that Cassandra may be the best
database (out of MongoDB, Cassandra, and PostgreSQL)
for managing sensor network data. These conclusions in the
van der Veen paper rely on a hardware setup of a server
with 64 Gb of RAM and 22 CPU cores running their data-
base. While this premise is sound for sensor network data
collection, few roboticists have dedicated servers for robot
data collection. A far more common setup in a robotics lab
is a single external computer, plus the computer on board
the robot. Given this stark difference in hardware, the van
der Veen work does not appear to be a valid basis for robot
data collection systems.

Figure 2: Design of the ROS Logging Test Framework. The
logging system creates a thread for each topic in the current
ROS network responsible for converting ROS messages to
an equivalent JSON format. The subscriber threads pass
prepared JSON messages to a database client responsible for
persisting these JSON messages to a particular database.

3. BENCHMARK STUDIES
In order to evaluate these three criteria, we conducted three
studies comparing PostgreSQL, MongoDB, and SQLite3: 1)
an initial throughput study, 2) a real-world dataset persis-
tence performance study, and 3) a query timing study (cor-
responding to the three criteria laid out in section 1).

3.1 Systems and Datasets
In order to persist ROS messages, all messages were con-
verted to a JSON (Javascript Object Notion) representa-
tion. The structure of JSON provides several benefits when
it comes to storing ROS messages:

1. JSON allows for flexibility in message structure, thereby
ensuring that changes in message structure, which are
inevitable during the development of a robotics sys-
tem, will not be breaking changes for the datastore,

2. JSON is structured in a very similar manner (nested
dictionaries) to that of ROS messages allowing for sim-
ple conversion between the formats,

3. JSON can be queried against as opposed to traditional
binary message representations.

Given this choice of data representation, MongoDB was cho-
sen as a good candidate database for evaluation since Mon-
goDB is a NoSQL document-oriented database which stores
all data in JSON and is optimized for fast JSON-based
queries. While JSON has not traditionally been considered
well suited to being stored in a relational database (having a
potentially varied structure), recent advances in PostgreSQL
9.4 have added extensions which allow PostgreSQL to query
against JSON data columns in a similar fashion to that
of MongoDB, except through the high-level query language
SQL. Therefore, PostgreSQL with JSON support was cho-
sen as the second database to evaluate in this study. Finally,
initial tests showed that the primary challenge in creating a
ROS message logging database is that ROS can have poten-
tially many messages streaming through its network at any

(a) 4 Messages Per Second (b) 16 Messages Per Second (c) 64 Messages Per Second

Figure 3: Tuning PostgreSQL by Testing Throughput Across Multiple Frequencies and Message Sizes

given time (on the order of Gb per minute), making it chal-
lenging to persist all of the messages in the network as fast as
they are generated. For this reason, SQLite3, an embedded
database designed to have minimal overhead, was chosen as
the third database to evaluate. While future work should
be conducted to examine the potential of using streaming
engines running on computer clusters for real-time analyt-
ics, this work focuses on the more common hardware setup
for the average roboticist of a one to two computer system
without the requisite resources for running extremely RAM
intensive data stores such as the in-memory database VoltDb
or the streaming engine Spark Streaming.

For the first criteria evaluated in this study (throughput),
a synthetic dataset was generated by creating a message
streaming ROS node with the ability to generate multiple
topics running at the same frequency and sending messages
of the same size in terms of bytes. To test the second crite-
ria (real-world dataset performance), both a set of eight bag
files obtained from previous research in our lab (referred
to as the HCR dataset) and two bag files from the MIT
Stata Center dataset were chosen [2]. The MIT Stata Cen-
ter data set encompasses a series of recordings of data from a
PR2 robot driving around a building. It includes data types
such as laser scans, accelerometer data, and images. While
unconventional, these types of data are common in robo-
tics research. Finally, in order to evaluate the third crite-
ria (query performance), we populated databases with data
from eight bag files from a dataset obtained from previous
research, HCR. The HCR dataset consists of data recorded
from a real-world user study, which was conducted prior to
the work for this paper. In the study, users tried teleoper-
ating a PR2 robot with a particular 3D user interface. The
message types in this dataset include the locations of the 3D
viewpoints the users used to look at the robot, the gripper
state, and the gripper location, which are useful for test-
ing queries against data reflecting a broad subset of possible
message types in the ROS environment.

3.2 Measuring Throughput
In the ROS ecosystem, published topics vary significantly in
both the frequency at which messages are sent upon them,
and in the size of messages belonging to the topic. This
makes sense when considering that message types are very

diverse, i.e. laser scans, joint angles, system events, etc.
Therefore, in order to effectively compare the throughput
of the three databases in consideration, several synthetic
datasets were generated, reflecting potential types of mes-
sages that could appear in the ROS network. A constant 20
topics were generated for each synthetic data stream with
each topic generating 500 messages. Additionally, each topic
subscriber in the logging program was limited to an incoming
message queue size of 10. This means that if messages are re-
ceived by the logger faster than the underlying database can
persist the messages, messages will be dropped from the in-
coming queue. This serves as a method of determining max-
imal throughput for each database. As frequencies and mes-
sage sizes are increased, messages will begin to be dropped
when the database has reached it maximum throughput for
inserts corresponding to messages of the given size. There-
fore, message sizes were varied on an exponential scale (each
size is twice the previous message size) from 5000 bytes (ap-
proximately the size of a tf message describing a coordinate
frame transformation) to 0.64 Mb (approximately the size of
a laser scan frame). To capture the effect of topic frequency
on throughput, data streams were generated at three dif-
ferent frequencies: 4 hz, 16 hz, and 64 hz. Altogether, this
resulted in the generation of 24 different data streams (3 fre-
quencies by 8 message sizes). Each database was tested by
logging each data stream 5 times in order to obtain reliable
average throughput values over each stream. The experi-
ment was run on a computer system running with an Intel
Core i7-4770 CPU with 8 cores, 16 GB of memory, and a
local hard disk.

3.2.1 Tuning PostgreSQL
In preliminary tests of the throughput measurement proce-
dure it was observed that PostgreSQL was performing sig-
nificantly worse than both SQLite3 and MongoDB on the
throughput experiment. It was determined that this was
likely due to the fact that the our naive implementation of
the PostgreSQL-ROS interface inserted each ROS message
in autocommit mode. This means that each message was
inserted in its own transaction. This clearly causes some
amount of unnecessary overhead, although the degree to
which using autocommit mode slows down PostgreSQL was
unclear. Therefore, an additional test was run in which the
naive PostgreSQL-ROS interface was re-engineered in order

(a) 4 Messages Per Second (b) 16 Messages Per Second (c) 64 Messages Per Second

Figure 4: Measurement of Throughput Across Multiple Frequencies and Message Sizes

to allow message inserts to be batched into 2 second groups
for each database transaction, under the hypothesis that
this optimization could yield significantly greater through-
put values by decreasing overhead. As can be seen in Fig-
ure 3, this optimization did yield improved throughput for
the PostgreSQL database. To further tune the PostgreSQL
engine, both the effective cache size and shared buffer size
were increased to rather aggressive levels (12Gb and 4Gb re-
spectively) in order to encourage maximally efficient inserts.
Again, this optimization improved overall PostgreSQL per-
formance, but only by a small amount when considering the
throughput values obtained by SQLite3 and MongoDB (see
Figure 4). Figure 4 references the throughput values for the
final optimized version of the PostgreSQL engine determined
in this section.

3.2.2 Results
Results for the throughput evaluation against PostgreSQL
(tuned as discussed in section 3.2.1), MongoDB, and SQLite3
can be seen in Figure 4. Figure 4 splits these results into
three graphs, one for each of the frequency levels. Interest-
ingly, PostgreSQL performed significantly worse than both
SQLite3 and MongoDB. This is perhaps not particularly sur-
prising seeing as how SQLite3 is designed to be an embedded
database with minimal overhead, and MongoDB is specifi-
cally designed for handling JSON data whereas PostgreSQl
is designed to manage relational data with extensions for
JSON document data.

Figure 4 shows the throughput of each database system
given a certain publishing rate and message size, for a fixed
number of messages. The points on the left of each graph,
where all three implementations achieved the same through-
put, show that for small message sizes, all three implemen-
tations were able to persist all the messages we published.
However, as the message sizes grow larger, we can see that
only some fraction of the total number of messages gener-
ated were actually inserted into the database, indicating the
maximal throughput for each database at these given mes-
sage frequencies and sizes.

As can be seen in Figure 4, as message size and frequency
increase, the observed maximal throughput increases. This
is not surprising since increased message sizes enable each

of the databases to perform writes of large blocks of data to
the disk which are more efficient than writes of small amou-
nts of data. Additionally, higher frequency ensures that the
database is constantly working at storing messages, remov-
ing any idle periods that may have been present at lower
frequencies.

3.2.3 Logging System Design Implications
These results lead to two design implications that should
inform the development of future logging systems for ROS.
First, in the case that only a single computer is available for
logging, SQLite exhibits the best performance due to the
fact that it has very low overhead and is therefore a good
choice for database backends. Second, in contrast to the first
design implication, SQLite is not designed to be distributed,
therefore in the case that more than one machine is available
for logging, MongoDB would be the best choice of database
backends.

3.3 Real World Performance
The previous section stress tested each of the databases by
generating a fixed number of topics with messages of fixed
sizes all sent at fixed frequencies. While this was a reason-
able setup for measuring throughput, it is not necessarily
representative of a real world work load. This is due to the
fact that real world ROS networks contain many topics each
with messages of different sizes and frequencies (see Figure
1). In order to evaluate how each of the databases performs
on this type of real world dataset with significant variance
among topics and messages, we tested the databases against
several recordings from the MIT Stata Center dataset (la-
beled MIT1 and MIT2). The MIT Stata Center dataset
is a series of bagfiles consisting of recordings of image and
laser data recorded at a high frequency by a robot exploring
the Stata Center at MIT. This dataset is typically used for
testing simultaneous localization and mapping algorithms
and is therefore a set of recordings with very high rate of
data flow. In order to test the real world performance of
each database on a more moderate rate of data flow, sev-
eral rosbag recordings obtained from the HCR dataset were
also tested against (labeled HCR1 and HCR2). This series
of tests used the same logging framework as in Section 3.2
(described in Figure 2).

Figure 5: Percentage of Messages Persisted Across Four Real
World Datasets. MIT1 and MIT2 are bagfiles from the MIT
Stata center dataset and HCR1 and HCR2 are bagfiles from
previous robotics experiments run in the Human-Centered
Robotics Lab at the University of Washington. Note that
the vertical axis shows the range (80, 100).

3.3.1 Results
Figure 5 shows that for both HCR1 and HCR2, all three
databases successfully persisted 100% of the messages. None
of the databases were able to persist 100% of messages for
either of MIT1 or MIT2. This is due to the fact that both
MIT datasets contain high frequency recordings of large
laser scans. While this issue of dropped messages could be
resolved by storing the images and laser scans directly in a
file system rather than in the database, this evaluation is in-
teresting in that SQLite3 performed worst on each dataset
whereas in the throughput evaluation, SQLite3 was found
to have the highest throughput. This is likely an indication
that SQLite3 performs best on homogeneous insert tasks
(the synthesized messages in each run of the tests in section
3.2 were of the same size), but performs poorly when large
amounts of non-homogeneous messages are inserted in the
database. This allows us to draw the design implication that
in a majority of cases, the best database to use for logging
ROS messages in terms of data persistence is MongoDB.

3.4 Query Performance
Up to this point, our work has been focused on efficiently
and effectively persisting ROS messages to a database; how-
ever, we have yet to consider the flexibility and efficiency of
querying against the databases after the ROS messages have
been store. Therefore, in the last portion of our benchmark-
ing study, we sought to evaluate the querying capabilities of
PostgreSQL, SQLite3, and MongoDB in regards to queries
that are potentially of interest to robotics researchers. To
this end, we evaluated the time taken execute several rep-
resentative queries against the HCR dataset (see section
3.1). The research questions we wanted to answer from the
dataset are shown in Figure 6.

These queries were chosen to test a set of important capa-
bilities for the logging system to have. Each system should
have the ability to retrieve results and filter by a field in-
side the JSON message. Additionally, each system should

Q1 Get the number of times the right gripper was closed

Q2 Get the every viewpoint position when the viewpoint
was behind the robot

Q3 Get the number of times the right gripper was moved
while in a particular region

Q4 Get the number of times a grasp was attempted with
the right gripper when the camera was in front of the
robot (+/- 0.1 seconds)

Figure 6: The queries we wanted to answer from the HCR
dataset.

efficiently support range queries. Finally, we wanted to see
how well each system could compute a join, using the times-
tamp as a join key. Because messages are asynchronous, the
join is on a small time range around one of the timestamps.
The queries were also chosen to reflect questions that the
researchers behind the HCR dataset actually answered in
their study, by manually processing the recordings.

3.4.1 Results
The time for each query is shown in table 1. See the ap-
pendix for the implementation of each query against each
database. MongoDB performed the best across all queries,
requiring less than 50 milliseconds for each of query 1, 2, and
3 and only about 250 milliseconds for query 4. Indexes on
MongoDB designed to improve each query had minimal ef-
fect due to the fact that each query was already running very
fast. PostgreSQL was the next fastest across all queries al-
though it was an order of magnitude slower than MongoDB
for each. This is clear evidence that PostgreSQL is designed
as a relational database and is therefore not as highly op-
timized for JSON queries as MongoDB is. Interestingly,
indexing PostgreSQL tables had no effect due to the fact
that each query required casting string-typed JSON data
to real values and PostgreSQL does not support creating
JSON expression-based indexes that include casting oper-
ations. Finally, SQLite3 performed worst of all databases
across all queries. This was caused by the fact that SQLite3
has no concept of a JSON datatype. Therefore, in order
to run queries over JSON data, user-defined functions must
be created for all operations required in each of the queries
(e.g. the python function json eq field was defined to evalu-
ate the expression json[‘position.x‘] > 0). A consequence of
the fact that user defined functions must be create to query
against JSON data in a SQLite database is that all queries
against the database necessarily require full sequential scans.
This slows down the SQLite database significantly.

4. DISCUSSION
The results from our three studies ultimately suggest that
MongoDB would be the best database system to use for a
ROS logging system. Although SQLite3 had higher through-
put on the synthetic dataset, MongoDB had the highest
throughput on a real world dataset. Additionally, Mon-
goDB outperformed both PostgreSQL and SQLite3 in terms
of query performance, especially on the query which required
a join.

Database Q1 Q2 Q3 Q4
MongoDB <1 40 32 2.68e3

MongoDB (indexed) <1 12 44 668
Postgres 21.49 232.25 347.27 1.99e4

Postgres (indexed) 1.14 225.45 352.11 1.95e4
SQLite3 1.20 2414.52 1547.70 4.85e5

Table 1: Query times, in milliseconds, for each query us-
ing MongoDB, PostgreSQL, and SQLite3. For MongoDB
and PostgreSQL, we also report query times after creating
indices designed for each query.

Using a database offers robotics researchers a convenient way
to analyze their data. For example, it takes about 10 lines of
Python code to manually process a bag file to find out how
many times the right gripper was closed (Q1). But, using a
database, the same query can be written with just a single
line of SQL or Javascript. Our results showed that using
MongoDB, queries could be completed in a couple of seconds
or less, which is fast enough for researchers to interactively
study their data.

On the other hand, some questions are easier to answer by
hand writing code, as opposed to writing a query. For ex-
ample, consider the problem of counting how many times
the user changed the 3D viewpoint in the interface. The
location of the 3D viewpoint is continuously published sev-
eral times a second, so as the user changes their viewpoint
in a single, fluid motion, each location will be logged with a
slightly different position. Once the user stops moving the
viewpoint, the location messages will be identical to each
other. As a result, when there is a continuous run of dis-
tinct values for the viewpoint location, we say that the user
is changing their viewpoint. Once the viewpoint locations
stay the same, we say the user has stopped changing their
viewpoint. In this case, writing a query would be far more
difficult than writing code to process the data.

This issue is an artifact of the type of data sent through
ROS networks. Messages in ROS tend to reflect the state
of a single sensor at a specific point in time. However,
for analysis purposes, we are often interested in high-level
changes in states. Additionally, because the messages are
asynchronous, it is hard to join tuples based on time. For
example, in Q4, we join the gripper position and the camera
position using a time window of +/- 0.1 seconds.

5. FUTURE WORK
One of the key issues that came up with PostgreSQL and
SQLite3 throughout this study was that neither database
system was designed to handle JSON structured data na-
tively. This was especially noticeable when evaluating the
database systems for query performance. One area that
would be interesting to study is if we could trade throughput
and flexiblity for query performance. For example, instead
of storing ROS messages as JSON data, the logging system
could transform ROS messages into flattened tuples of the
appropriate type. This would allow the user to query the
database without needing special JSON support. The user
could also add indices on certain columns, which we were
unable to do with PostgreSQL and SQLite in this study.
One downside to this approach is that throughput would

decrease, since easy message would have to be flattened out
before inserting it into the database. However, as we saw
earlier, PostgreSQL and SQLite3 had no problem inserting
all the messages in the HCR dataset. The other downside
to this approach is that any change to the ROS message
structure would require a schema change in the correspond-
ing SQL tables. As a result, this solution would be best for
small, one-off research projects.

Another area of future work is to analyze streaming data
analysis solutions such as Apache Spark or VoltDB. These
database systems could be useful for situations in which the
robots are more established and are already deployed. These
solutions would allow the developer to keep track of key
statistics on the robot’s sensor data in real-time.

6. CONCLUSION
In this paper, we characterized the performance of three dif-
ferent database systems for use in a robotics logging applica-
tion. We compared their maximum throughput for both syn-
thetic and real-world datasets. Finally, we evaluated their
speed at conducting several queries that were drawn from
previous robotics research. Overall, we found that Mon-
goDB would be the best database system to back a logging
application, both because it had good throughput, and be-
cause its data model enabled fast queries across the datasets.

7. REFERENCES
[1] A. Dietrich, S. Mohammad, S. Zug, and J. Kaiser. ROS

meets Cassandra: Data management in smart
environments with NoSQL. In Proc. of the 11th Intl.
Baltic Conference (Baltic DB&IS), 2014.

[2] M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard.
The MIT Stata Center dataset. The International
Journal of Robotics Research, 32(14):1695–1699, 2013.

[3] T. Niemueller, G. Lakemeyer, and S. S. Srinivasa. A
generic robot database and its application in fault
analysis and performance evaluation. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 364–369. IEEE,
2012.

[4] J. S. van der Veen, B. van der Waaij, and R. J. Meijer.
Sensor data storage performance: SQL or NoSQL,
physical or virtual. In Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on, pages
431–438. IEEE, 2012.

APPENDIX

A. MONGODB QUERIES (IN JAVASCRIPT)
var c = db.r_gripper_controller__command.find ({ ' position ' : 0.0}).count();

var c = db.rviz_camera_publisher__camera_pose.find ({ ' position.x ' : {$lte: 0}}).count();

var c = db.r_cart__command_pose.find ({
' pose.position.z ' : {$gt: 1},
' pose.position.y ' : {$gt: -0.5, $lt: 0.5},
' pose.position.x ' : {$gt: 0.5, $lt: 1}

}).count();

var c = db.r_gripper_controller__command.find ({ ' position ' : 0.0}).map(
function(evt) {

var evtTime = evt._meta.inserted_at.getTime ();
var row = db.rviz_camera_publisher__camera_pose.findOne ({

' position.x ' : {$gte: 0},
' _meta.inserted_at ' : {

$lt: new Date(evtTime + 500),
$gt: new Date(evtTime - 500)

}
})
return row;

}
).length;

db.r_gripper_controller__command
.createIndex ({"position": 1});

db.rviz_camera_publisher__camera_pose
.createIndex ({"position.x": 1, "_meta.inserted_at": 1});

db.r_cart__command_pose
.createIndex ({"pose.position.x": 1, "pose.position.y": 1, "pose.position.z": 1});

B. POSTGRESQL QUERIES (IN SQL)

SELECT COUNT (*)

FROM r_gripper_controller__command

WHERE (data ->> ' position '):: REAL = 0;

SELECT COUNT (*)

FROM rviz_camera_publisher__camera_pose

WHERE (data -> ' position ' ->> ' x '):: REAL <= 0;

SELECT COUNT (*)

FROM r_cart__command_pose --Contains right gripper location info

WHERE (data -> ' pose ' -> ' position ' ->> ' z '):: REAL > 1

AND (data -> ' pose ' -> ' position ' ->> ' y '):: REAL > -0.5

AND (data -> ' pose ' -> ' position ' ->> ' y '):: REAL < 0.5

AND (data -> ' pose ' -> ' position ' ->> ' x '):: REAL > 0.5

AND (data -> ' pose ' -> ' position ' ->> ' x '):: REAL < 1;

SELECT COUNT (*)

FROM r_gripper_controller__command a

WHERE (data ->> ' position '):: REAL = 0

AND EXISTS (

SELECT *

FROM rviz_camera_publisher__camera_pose b

WHERE ABS(EXTRACT(EPOCH FROM

CAST(a.data -> ' _meta ' ->> ' inserted_at ' AS TIMESTAMP WITH TIME ZONE) -

CAST(b.data -> ' _meta ' ->> ' inserted_at ' AS TIMESTAMP WITH TIME ZONE)

)) < 0.5

AND (b.data -> ' position ' ->> ' x '):: REAL >= 0

);

C. SQLITE3 QUERIES (IN PYTHON)
Example UDF to test a JSON field for equality against a constant
def get_val(self , doc , key):

d = json.loads(doc)

val = pq(d, key)

return val

def json_eq_field(self , doc , key , value):
val = self.get_val(doc , key)

if val is None:
return False

return val == value

#Queries
lite = NSQlite3(' querytestlarge.db ' , JSONAdapter ())
coll = lite.collection ()

#Q1
sql = ' ' ' SELECT COUNT (*) as count

FROM r_gripper_controller__command
WHERE json_eq_field(msg , ?, ?); ' ' '

coll.execute(sql , [' position ' , 0]).all()

#Q2
sql = ' ' ' SELECT COUNT (*)

FROM rviz_camera_publisher__camera_pose
WHERE json_le_field(msg , ?, ?); ' ' '

coll.execute(sql , [' position.x ' , 0]).all()

#Q3
sql = ' ' ' SELECT COUNT (*)

FROM r_cart__command_pose
WHERE json_gt_field(msg , ?, ?)
AND json_gt_field(msg , ?, ?)
AND json_lt_field(msg , ?, ?)
AND json_gt_field(msg , ?, ?)
AND json_lt_field(msg , ?, ?); ' ' '

vals = [' pose.position.z ' , 1,
' pose.position.y ' , -0.5,
' pose.position.y ' , 0.5,
' pose.position.x ' , 0.5,
' pose.position.x ' , 1]

coll.execute(sql , vals).all()

#Q4
sql = ' ' ' SELECT COUNT (*)

FROM r_gripper_controller__command a
WHERE json_eq_field(a.msg , ?, ?)
AND EXISTS (

SELECT *
FROM rviz_camera_publisher__camera_pose b
WHERE json_get_time_diff(a.msg , ?, b.msg , ?) < 500
AND json_ge_field(b.msg , ?, ?)

); ' ' '

vals = [' position ' , 0.0,
' _meta.inserted_at ' ,
' _meta.inserted_at ' ,
' position.x ' , 0]

coll.execute(sql , vals).all()

