Project Presentations

Friday, June 7th, 9:30-2:30, in CSE 405

What to include:
• Describe the problem:
 – why is it important, why is it non-trivial
• Overview prior approaches,
 – related work
• Your approach
• Your results
 – theoretical, empirical, experimental
• Discuss their significance
 – do they work? do they solve the problem you set out to do? do they improve over existing work?
• Conclusions

Rule of thumb: 1 slide / minute, less slack. 15’ ➞ 12 slides.
Outline

Sources:

• Karnouvarakis et al., *Provenance Semirings*, PODS 2007

• Tannen, Tutorial on Provenance in EDBT 2010
Data Provenance

• Provenance information describes the origins and the history of data in its life cycle. Such information (also called lineage) is important to many data management tasks.
Data Provenance

• Provenance inside the DBMS
 – Will discuss today

• Provenance outside of the DBMS
 – Much more messy; there is a standard, OPM (Open Provenance Model)
Provenance Annotations

• Some query produces an output table T(A,B,C)
• We store it over some period of time
• Later we ask: “where did this tuple come from?”
• The “provenance annotation” answers this.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>provenance1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>provenance2</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c2</td>
<td></td>
<td>provenance3</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c3</td>
<td></td>
<td>provenance4</td>
</tr>
</tbody>
</table>
Provenance Annotations

• Start by annotating each tuple in the original database with a unique identifier; can be the Tuple Id (TID)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td></td>
<td>X1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td></td>
<td>X2</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td></td>
<td>X3</td>
</tr>
</tbody>
</table>

• Next, compute the provenance expression inductively, based on the query plan
Join Operator

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>X1 \cdot Y1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c1</td>
<td>X2 \cdot Y1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c2</td>
<td>X3 \cdot Y2</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c3</td>
<td>X3 \cdot Y3</td>
</tr>
</tbody>
</table>

Join operator symbol: \(\bowtie \)

A \times B = C

- A: a1, a2
- B: b1, b2
- C: c1, c2, c3

Join result:

- X1: a1 \cdot b1 \cdot c1
- X2: a2 \cdot b1 \cdot c1
- X3: a2 \cdot b2 \cdot c2, a2 \cdot b2 \cdot c3
Projection Operator

\[\Pi \]

\[\begin{array}{|c|c|c|}
\hline
A & B & \text{X} \\
\hline
a1 & b1 & \text{X1} \\
\hline
a1 & b2 & \text{X2} \\
\hline
a2 & b1 & \text{X3} \\
\hline
a2 & b2 & \text{X4} \\
\hline
a2 & b3 & \text{X5} \\
\hline
\end{array} \]

= \begin{array}{|c|c|c|}
\hline
A \\
\hline
a1 \\
\hline
a2 \\
\hline
\end{array}
X1 + X2
X3 + X4 + X5
Union Operator

\[
\begin{array}{c|c}
A & B \\
\hline
a1 & b1 \\
a2 & b2 \\
\end{array}
\quad \quad
\begin{array}{c|c}
A & B \\
\hline
a2 & b2 \\
a3 & b3 \\
\end{array}
\quad \quad
\begin{array}{c|c}
A & B \\
\hline
a1 & b1 \\
a2 & b2 \\
a3 & b3 \\
\end{array}
\]

\[=\]

\[
\begin{array}{c|c}
A & B \\
\hline
a1 & b1 \\
a2 & b2 \\
a3 & b3 \\
\end{array}
\quad \quad
\begin{array}{c|c}
A & B \\
\hline
a1 & b1 \\
a2 & b2 \\
a3 & b3 \\
\end{array}
\quad \quad
\begin{array}{c|c}
X1 & X2 + Y1 \\
\hline
X1 & X3 \\
\end{array}
\]
Selection Operator

\(\sigma_{A=a1} \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>X1</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>X2</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>X3</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>X4</td>
</tr>
<tr>
<td>a2</td>
<td>b3</td>
<td>X5</td>
</tr>
</tbody>
</table>

\[\begin{array}{cc}
A & B \\
\hline
a1 & b1 \\
\hline
a1 & b2 \\
\hline
\end{array} \]

\[\begin{array}{cc}
A & B \\
\hline
X1 \\
\hline
X2 \\
\hline
\end{array} \]

We could simply remove the tuples filtered out. But it’s better to keep them around (we’ll see why). What is their annotation?
We could simply remove the tuples filtered out. But it’s better to keep them around (we’ll see why). What is their annotation?
Complex Example

\[\sigma_{C=e} \prod_{AC} (\prod_{AC}(R) \bowtie \prod_{BC}(R) \cup \prod_{AB}(R) \bowtie \prod_{BC}(R)) = \]

\[R = \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
<td></td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

A	C	
 a | c | |
 | (X \cdot X + X \cdot X) \cdot 0 = 2 \cdot X^2 |
 a | e | |
 | X \cdot Y \cdot 1 = X \cdot Y |
 d | c | |
 | Y \cdot X \cdot 0 = 0 |
 d | e | |
 | (Y \cdot Y + Y \cdot Z + Y \cdot Y) \cdot 1 = 2 \cdot Y^2 + Y \cdot Z |
 f | e | |
 | (Z \cdot Z + Z \cdot Y + Z \cdot Z) \cdot 1 = 2 \cdot Z^2 + Y \cdot Z |

Discuss in class what these annotations mean
K-Relations

Definition. A K-relation is a relation where each tuple is annotated with an element from the set K.

What we have described so far is an extension of the positive operations of the relational algebra to K-relations.

We assumed that K has the operators $+,$ \cdot.
Identities on Provenance Expressions

The problem:

• We have defined provenance for a query plan P

• Given a query Q, we want the provenance to be independent of the plan

• Needed: if $P_1 = P_2$, then provenance(P_1) = Provenance(P_2)
Definition. A structure $(K, +, \cdot, 0, 1)$ is called a *commutative semiring* if:

1. $(K,+,0)$ is a commutative monoid:
 a. $+$ is associative: $(x+y)+z=x+(y+z)$
 b. $+$ is commutative: $x+y=y+x$
 c. 0 is the identity for $+$: $x+0=0+x=x$

2. $(K, \cdot, 1)$ is a commutative monoid:
 a. … (similar identities)

3. \cdot distributes over $+$: $x \cdot (y+z) = x \cdot y + x \cdot z$

4. For all x: $x \cdot 0 = 0 \cdot x = 0$
Theorem. The standard identities of the Bag algebra hold for K-relations iff \((K, +, \cdot, 0, 1)\) is a commutative semiring.

Definition. A structure \((K, +, \cdot, 0, 1)\) is called a commutative semiring if:

1. \((K,+,0)\) is a commutative monoid:
 a. + is associative: \((x+y)+z=x+(y+z)\)
 b. + is commutative: \(x+y=y+x\)
 c. 0 is the identity for +: \(x+0=0+x=x\)

2. \((K, \cdot, 1)\) is a commutative monoid:
 a. … (similar identities)

3. \(\cdot\) distributes over +:
 \(x \cdot (y+z) = x \cdot y + x \cdot z\)

4. For all \(x\):
 \(x \cdot 0 = 0 \cdot x = 0\)
Identities on Provenance Expressions

Discuss in class:

\[
q(x,u) := R(x,y), S(y,z), T(z,u)
\]

Given two plans, why are the annotations equal?
Applications

\[\sigma_{C=e} \prod_{AC}(\prod_{AC}(R) \Join \prod_{BC}(R) \cup \prod_{AB}(R) \Join \prod_{BC}(R)) = \]

\[R = \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c|c}
A & C & 2 \cdot X^2 \\
\hline
a & c & 2 \cdot X^2 \\
\hline
da & e & X \cdot Y \\
\hline
d & e & 2 \cdot Y^2 + Y \cdot Z \\
\hline
f & e & 2 \cdot Z^2 + Y \cdot Z \\
\end{array}
\]

Q: Suppose we delete the tuple (d,b,e) from R. Which tuple(s) disappear from the result?
Applications

\[\sigma_{C=e} \Pi_{AC}(\Pi_{AC}(R) \bowtie \Pi_{BC}(R) \cup \Pi_{AB}(R) \bowtie \Pi_{BC}(R)) = \]

\(R = \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>2 \cdot X^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>X \cdot Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z</th>
<th>2 \cdot Y^2 + Y \cdot Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
</tr>
</tbody>
</table>

\[Q: \text{Suppose we delete the tuple (d,b,e) from } R. \text{ Which tuple(s) disappear from the result?} \]

\[A: \text{Set } Y = 0 \]
Applications

\[\sigma_{C=e} \Pi_{AC}(\Pi_{AC}(R) \bowtie \Pi_{BC}(R) \cup \Pi_{AB}(R) \bowtie \Pi_{BC}(R)) = \]

\[R = \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>2 \cdot X^2</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>X \cdot Y</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>2 \cdot Y^2 + Y \cdot Z</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>2 \cdot Z^2 + Y \cdot Z</td>
</tr>
</tbody>
</table>

Q: Suppose each tuple in R occurs 3 times (bag semantics). How many times occurs each tuple in the answer?
Applications

\[\sigma_{C=e} \prod_{AC}(\prod_{AC}(R) \Join \prod_{BC}(R) \cup \prod_{AB}(R) \Join \prod_{BC}(R)) = \]

\[R = \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
</tr>
</tbody>
</table>

Q: Suppose each tuple in R occurs 3 times (bag semantics). How many times occurs each tuple in the answer?

A. Set X=Y=Z=3
Sets of Contributing Tuples

\[\sigma_{C=e} \prod_{AC}(\prod_{AC}(R) \bowtie \prod_{BC}(R) \cup \prod_{AB}(R) \bowtie \prod_{BC}(R)) = \]

\[R = \]

\[
\begin{array}{c|c|c}
A & B & C \\
\hline
a & b & c \\
\hline
d & b & e \\
\hline
f & g & e \\
\end{array}
\]

\[
\begin{array}{c|c|c}
A & C & \text{expression} \\
\hline
a & c & 2 \cdot X^2 \\
\hline
a & e & X \cdot Y \\
\hline
d & e & 2 \cdot Y^2 + Y \cdot Z \\
\hline
f & e & 2 \cdot Z^2 + Y \cdot Z \\
\end{array}
\]

\[
\begin{array}{c|c|c}
A & C & \text{expression} \\
\hline
a & c & X \\
\hline
a & e & X, Y \\
\hline
d & e & Y, Z \\
\hline
f & e & Y, Z \\
\end{array}
\]

Trace only the set of input tuples that contributed to an output tuple

This is also a semi-ring! Which one?
Semirings for various models of provenance (1)

\[R = \begin{array}{ccc}
A & B & C \\
a & b & c \\
d & b & e \\
f & g & e \\
\end{array} \quad X \\
\begin{array}{ccc}
A & C \\
d & e \\
\end{array} \quad Y,Z \\
\]

[Lineage] [CuiWidomWiener 00 etc.]

Sets of contributing tuples

Semiring: \((\text{Lin}(X), +, \cup, \bot, \emptyset)\)
Semirings for various models of provenance (2)

(Witness, Proof) **why-provenance**
[BunemanKhannaTan 01] & [Buneman+ PODS08]

Sets of witnesses (w. = set of contributing tuples)

Semiring: \((\text{Why}(X), \cup, \cup, \emptyset, \{\emptyset\})\)

Source: Tannen, EDBT 2010
Semirings for various models of provenance (3)

Minimal witness **why-provenance**
[BunemanKhannaTan 01]

Sets of minimal witnesses

Semiring: \((\text{PosBool}(X), \land, \lor, \top, \bot)\)
Semirings for various models of provenance (4)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
</tr>
</tbody>
</table>

Trio lineage [Das Sarma+ 08]

Bags of sets of contributing tuples (of witnesses)

Semiring: \((\text{Trio}(X), +, \cdot, 0, 1)\) (defined in [Green, ICDT 09])

Source: Tannen, EDBT 2010
Semirings for various models of provenance (5)

R =

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Q =

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

Sets of bags of contributing tuples

Polynomials with boolean coefficients [Green, ICDT 09]

(B[X]-provenance)

Semiring: (B[X], +, ·, 0, 1)

Source: Tannen, EDBT 2010
Semirings for various models of provenance (6)

Provenance polynomials [GKT, PODS 07]

(Bags of bags of contributing tuples)

Semiring: \((\mathbb{N}[\mathcal{X}], +, \cdot, 0, 1)\)

Source: Tannen, EDBT 2010
Discretionary Access Control [LaPadula]
- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing… = 0

\[R = \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
</tr>
</tbody>
</table>

\[X = C \]
\[Y = P \]
\[Z = T \]

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
</tr>
</tbody>
</table>

\[2 \cdot X^2 = ? \]
\[X \cdot Y = ? \]
\[2 \cdot Y^2 + Y \cdot Z = ? \]
\[2 \cdot Z^2 + Y \cdot Z = ? \]
Application

Discretionary Access Control [LaPadula]
- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing… = 0

\[
\begin{align*}
R &= \text{discretionary access control} \\
A &\quad B &\quad C \\
a &\quad b &\quad c &\quad X = C \\
d &\quad b &\quad e &\quad Y = P \\
f &\quad g &\quad e &\quad Z = T
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>(2 \cdot X^2 = C)</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>(X \cdot Y = C)</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>(2 \cdot Y^2 + Y \cdot Z = C)</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>(2 \cdot Z^2 + Y \cdot Z = T)</td>
</tr>
</tbody>
</table>

\((A, \text{min}, \text{max}, 0, P), \text{ where } A = P < C < S < T < 0\)
But are there useful commutative semirings?

<table>
<thead>
<tr>
<th>(B, ∧, ∨, ⊤, ⊥)</th>
<th>Set semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ℕ, +, ∙, 0, 1)</td>
<td>Bag semantics</td>
</tr>
<tr>
<td>(P(Ω), ∪, ∩, ∅, Ω)</td>
<td>Probabilistic events</td>
</tr>
<tr>
<td></td>
<td>[FuhrRölleke 97]</td>
</tr>
<tr>
<td>(BoolExp(X), ∧, ∨, ⊤, ⊥)</td>
<td>Conditional tables (c-tables)</td>
</tr>
<tr>
<td></td>
<td>[ImielinskiLipski 84]</td>
</tr>
<tr>
<td>(R⁺∞, min, +, 1, 0)</td>
<td>Tropical semiring</td>
</tr>
<tr>
<td></td>
<td>(cost/distrust score/confidence need)</td>
</tr>
<tr>
<td>(A, min, max, 0, P)</td>
<td>Access control levels</td>
</tr>
<tr>
<td>where A = P < C < S < T < 0</td>
<td>[PODS8]</td>
</tr>
</tbody>
</table>
A provenance hierarchy

most informative

least informative

CSE544 - Spring, 2013
One semiring to rule them all… (apologies!)

Example: \(2x^2y + xy + 5y^2 + \)

\[\mathbb{N}[X]\]

- drop coefficients
 \(x^2y + xy + y^2 + z\)

\[\mathbb{B}[X]\]

- drop exponents
 \(3xy + 5y + z\)

\[\text{Trio}(X)\]

- apply absorption
 \((ab + b = b)\)

\[\text{Why}(X)\]

- collapse terms
 \(xyz\)

\[\text{Lin}(X)\]

\[\text{PosBool}(X)\]

A path downward from \(K_1\) to \(K_2\) indicates that there exists an **onto** (surjective) semiring homomorphism \(h : K_1 \rightarrow K_2\)
Using homomorphisms to relate models

Example: $2x^2y + xy + 5y^2 + z$

- **N[X]**
 - drop coefficients
 - $x^2y + xy + y^2 + z$

- **B[X]**
 - drop exponents
 - $3xy + 5y + z$

- **Trio(X)**
 - apply absorption
 - $(ab + b = b)$
 - $y + z$

- **Why(X)**
 - drop both exp. and coeff.
 - $xy + y + z$
 - collapse terms
 - xyz

- **Lin(X)**
 - $x^2y + xy + y^2 + z$

- **PosBool(X)**

Homomorphism?

$h(x+y) = h(x)+h(y)$ \(h(xy)=h(x)h(y) \) \(h(0)=0 \) \(h(1)=1 \)

Moreover, for these homomorphisms \(h(x)= x \)