CSE 544: Principles of Database Systems

Parallel Databases
Announcements

• Paper reviews:
 – Join processing paper was due yesterday
 – MapReduce paper due on Monday, May 6th

• HW2 is due on Monday, May 6th
 – You should have made lots of progress by now!
Overview of Today’s Lecture

• Parallel databases (Chapter 22.1 – 22.5)

• MapReduce – base on the paper
Architectures for Parallel Databases

• Shared memory

• Shared disk

• Shared nothing
Shared Memory

Interconnection Network

Global Shared Memory

P P P

D D D
Shared Disk

Interconnection Network
Shared Nothing

Interconnection Network

P
M
D
P
M
D
P
M
D
Shared Memory

• Nodes share both RAM and disk
• Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to get a query to run faster (see query plans)

• Easy to use and program
• But very expensive to scale: last remaining cash cows in the hardware industry
Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:
- Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines
Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:
- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

We discuss only Shared Nothing in class
In Class

• You have a parallel machine. Now what?

• How do you speed up your DBMS?
Approaches to Parallel Query Evaluation

• Inter-query parallelism
 – Transaction per node
 – OLTP
Approaches to Parallel Query Evaluation

- **Inter-query parallelism**
 - Transaction per node
 - OLTP

- **Inter-operator parallelism**
 - Operator per node
 - Both OLTP and Decision Support
Approaches to Parallel Query Evaluation

• **Inter-query parallelism**
 – Transaction per node
 – OLTP

• **Inter-operator parallelism**
 – Operator per node
 – Both OLTP and Decision Support

• **Intra-operator parallelism**
 – Operator on multiple nodes
 – Decision Support
Approaches to Parallel Query Evaluation

• **Inter-query parallelism**
 – Transaction per node
 – OLTP

• **Inter-operator parallelism**
 – Operator per node
 – Both OLTP and Decision Support

• **Intra-operator parallelism**
 – Operator on multiple nodes
 – Decision Support

We study only intra-operator parallelism: most scalable
Basic Query Processing: Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

- **Selection**: $\sigma_{A=123}(R)$

- **Group-by**: $\gamma_{A,\text{sum}(B)}(R)$

- **Join**: $R \bowtie S$
Basic Query Processing: Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

- **Selection**: $\sigma_{A=123}(R)$
 - Scan file R, select records with A=123

- **Group-by**: $\gamma_{A,\text{sum}(B)}(R)$
 - Scan file R, insert into a hash table using attr. A as key
 - When a new key is equal to an existing one, add B to the value

- **Join**: $R \bowtie S$
 - Scan file S, insert into a hash table using attr. B as key
 - Scan file R, probe the hash table using attr. B
Parallel Query Processing

How do we compute these operations on a shared-nothing parallel db?

- **Selection**: $\sigma_{A=123}(R)$ (that’s easy, won’t discuss…)

- **Group-by**: $\gamma_{A,\text{sum}(B)}(R)$

- **Join**: $R \bowtie S$

Before we answer that: how do we store R (and S) on a shared-nothing parallel db?
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Servers:

1 2 ... P
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
</table>
| ... | ... | ...

Servers:

1

2

...
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Servers:

1

2

...

P

Which tuples go to what server?
Horizontal Data Partitioning

- **Block Partition:**
 - Partition tuples arbitrarily s.t. \(\text{size}(R_1) \approx \cdots \approx \text{size}(R_P) \)

- **Hash partitioned on attribute \(A \):**
 - Tuple \(t \) goes to chunk \(i \), where \(i = h(t.A) \mod P + 1 \)

- **Range partitioned on attribute \(A \):**
 - Partition the range of \(A \) into \(-\infty = v_0 < v_1 < \cdots < v_P = \infty \)
 - Tuple \(t \) goes to chunk \(i \), if \(v_{i-1} < t.A < v_i \)
Parallel GroupBy

Data: $R(K,A,B,C)$
Query: $\gamma_{A,\text{sum}(C)}(R)$

Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned
- R is hash-partitioned on K
Parallel GroupBy

Data: \(R(K,A,B,C) \)
Query: \(\gamma_{A,\text{sum}(C)}(R) \)
- \(R \) is block-partitioned or hash-partitioned on \(K \)

\[\begin{align*}
R_1 \quad & R_2 \quad \ldots \quad R_P \\
\downarrow & \downarrow & \quad \downarrow & \downarrow & \quad \downarrow \\
R_1' \quad & R_2' \quad \ldots \quad R_P' \\
\end{align*} \]
Parallel Join

- **Data:** $R(K_1, A, B), S(K_2, B, C)$
- **Query:** $R(K_1, A, B) \bowtie S(K_2, B, C)$

Initially, both R and S are horizontally partitioned on K1 and K2.

- R_1, S_1
- R_2, S_2
- R_P, S_P
Parallel Join

- **Data**: \(R(K_1, A, B), S(K_2, B, C) \)
- **Query**: \(R(K_1, A, B) \bowtie S(K_2, B, C) \)

Initially, both \(R \) and \(S \) are horizontally partitioned on \(K_1 \) and \(K_2 \)

- Reshuffle \(R \) on \(R.B \) and \(S \) on \(S.B \)
- Each server computes the join locally
Speedup and Scaleup

• Consider:
 – Query: $\gamma_{A,\text{sum}(C)}(R)$
 – Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the new running time?

• If we double both P and the size of R, what is the new running time?
Speedup and Scaleup

• Consider:
 – Query: $\gamma_{A,\text{sum}(C)}(R)$
 – Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the new running time?
 – Half (each server holds $\frac{1}{2}$ as many chunks)

• If we double both P and the size of R, what is the new running time?
 – Same (each server holds the same # of chunks)
Uniform Data v.s. Skewed Data

• Let $R(\mathbf{K}, \mathbf{A}, \mathbf{B}, \mathbf{C})$; which of the following partition methods may result in skewed partitions?

• Block partition

• Hash-partition
 – On the key K
 – On the attribute A
Uniform Data v.s. Skewed Data

- Let \(R(\text{K}, \text{A}, \text{B}, \text{C}) \); which of the following partition methods may result in skewed partitions?

- **Block partition**
 - Uniform

- **Hash-partition**
 - On the key K
 - Uniform
 - On the attribute A
 - May be skewed

Assuming good hash function

E.g. when all records have the same value of the attribute A, then all records end up in the same partition
Parallel DBMS

- Parallel query plan: tree of parallel operators
 - Intra-operator parallelism
 - Data streams from one operator to the next
 - Typically all cluster nodes process all operators
- Can run multiple queries at the same time
 - Inter-query parallelism
 - Queries will share the nodes in the cluster
- Notice that user does not need to know how his/her SQL query was processed
Loading Data into a Parallel DBMS

Example using Teradata System

AMP = “Access Module Processor” = unit of parallelism
Example Parallel Query Execution

Find all orders from today, along with the items ordered

```
SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()
```
Example Parallel Query Execution

Order(oid, item, date), Line(item, …)

AMP 1

select date = today()

scan Order o

hash h(o.item)

AMP 2

select date = today()

scan Order o

hash h(o.item)

AMP 3

select date = today()

scan Order o

hash h(o.item)
Example Parallel Query Execution

AMP 1

hash
h(i.item)
scan
Item i

AMP 2

hash
h(i.item)
scan
Item i

AMP 3

hash
h(i.item)
scan
Item i

Order(oid, item, date), Line(item, ...)

join
o.item = i.item
date = today()
Order o

CSE544 - Spring, 2013
Example Parallel Query Execution

AMP 1

join

o.item = i.item

contains all orders and all lines where hash(item) = 1

AMP 2

join

o.item = i.item

contains all orders and all lines where hash(item) = 2

AMP 3

join

o.item = i.item

contains all orders and all lines where hash(item) = 3

Order(oid, item, date), Line(item, …)
Parallel Query Plans

• Same relational operators

• Add special split and merge operators
 – Handle data routing, buffering, and flow control

• Example: exchange operator
 – Inserted between consecutive operators in the query plan
Time Permitting….

• Discussion of Shapiro’s paper on join algorithms
Partitioned Hash Join, or GRACE Join

R \bowtie S

How does it work?
Partitioned Hash Join, or GRACE Join

$R \bowtie S$

- **Step 1:**
 - Hash S into M buckets
 - send all buckets to disk

- **Step 2**
 - Hash R into M buckets
 - Send all buckets to disk

- **Step 3**
 - Join every pair of buckets
The Idea of Hash-Based Partitioning

- Idea: partition a relation R into $M-1$ buckets, on disk
- Each bucket has size approx. $\frac{B(R)}{M-1} \approx \frac{B(R)}{M}$

Assumption: $\frac{B(R)}{M} \leq M$, i.e. $B(R) \leq M^2$
Grace-Join

- Partition both relations using hash fn h: R tuples in partition i will only join S tuples in partition i.

- Read in a partition of R, hash it using $h2$ ($\leftrightarrow h!$). Scan matching partition of S, search for matches.
Grace Join

• Cost: 3B(R) + 3B(S)
• Assumption: min(B(R), B(S)) \leq M^2
Hybrid Hash Join

• What problem does it address?
Hybrid Hash Join

• What problem does it address?

• If $B(R) \leq M$ then we can use main memory hash-join: $\text{cost} = B(R) + B(S)$

• If $B(R) \geq M$ then we must use Grace join: $\text{cost} \text{jumps to } 3\times B(R) + 3\times B(S)$
Hybrid Hash Join

• How does it work?
Hybrid Hash Join

• How does it work?
• Use $B(R)/M$ buckets
• Since $B(R)/M << M$, there is enough space left in main memory: use it to store a few buckets
• Fuzzy math to make this work, but best done adaptively:
 – Start by keeping all buckets in main memory
 – When the remaining memory ($M - B(R)/M$) fills up, spill one bucket to disk